
Nicholas Hunter Mosier
PhD Candidate at Stanford University, Department of Computer Science

47 Olmsted Rd, Apt 222 • Stanford, CA • 94305
Phone: (520) 250-2480 • Email: nmosier@stanford.edu

LinkedIn: in/nmosier • GitHub: nmosier • Website: https://nmosier.github.io
EDUCATION

Stanford University • Stanford, CA September 2020 – present
PhD Candidate in Computer Science at Stanford University, School of Engineering

• GPA: 4.23 / 4
• Advisor: Caroline Trippel
• Expected graduation / conferral of PhD: March 2026

Middlebury College • Middlebury, VT September 2016 – May 2020
Bachelor of Arts with a Double Major in Computer Science and Mathematics

• GPA: 3.99 / 4
• Advisor: Peter C. Johnson

PHD RESEARCH SUMMARY
Security-critical software—including OS kernels, cryptographic libraries, and web browsers—is written under
the assumption that it executes sequentially. However, in reality, it does not. Modern processors execute
programs speculatively and out-of-order, enabling transient execution—i.e., the execution of instructions that
are never architecturally committed. Attacks such as Spectre and Meltdown exploit transient execution to
steer secret data towards the unsafe operands of transient transmit instructions, which leak data via
microarchitectural side channels like the cache. My research focuses on comprehensively and provably
securing security-critical software against transient execution attacks using formally-grounded compiler-
based techniques (e.g., Serberus, implemented for LLVM) and hardware-software codesigned mitigations
(e.g., TPT-PTeX, implemented for LLVM and gem5).

AWARDS & HONORS
• 1st place team in Microarchitectural Attacks and Defenses (MAD) CTF at ISCA’23	 Jun. 2023

• Graduated Salutatorian of the Class of 2020 at Middlebury College	 May 2020

• Graduated Summa Cum Laude from Middlebury College in 2020	 May 2020

• Timothy T. Huang Award in Computer Science, Middlebury College	 May 2020

• Phi Beta Kappa Prize, Middlebury College	 Nov. 2019

• Induction into Phi Beta Kappa, Middlebury College	 Nov. 2019

PUBLICATIONS
Refereed
• Nicholas Mosier, Hamed Nemati, John C. Mitchell, Caroline Trippel. “Serberus: Protecting Cryptographic

Code from Spectres at Compile Time.” In Proceedings of the 45th IEEE Symposium on Security and
Privacy (S&P’24). San Fransisco, California. May 2024.

• Sonia Martin, Nicholas Mosier, Obi Nnorom Jr., Yancheng Ou, Liana Patel, Oskar Triebe, Gustavo Cezar,
Philip Levis, Ram Rajagopal. “Software Defined Energy Grid Storage.” In Proceedings of the 9th ACM
International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (BuildSys
’22), Boston, Massachusetts. November 2022.

• Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, Caroline Trippel. “Axiomatic Hardware-Software
Contracts for Security.” In Proceedings of the 49th Annual International Symposium on Computer
Architecture (ISCA’22), New York City, New York. June 2022.

mailto:nmosier@stanford.edu
https://www.linkedin.com/in/nmosier
https://github.com/nmosier
https://nmosier.github.io
https://www-cs.stanford.edu/~trippel/pubs/mosier_SP24.pdf
https://www-cs.stanford.edu/~trippel/pubs/mosier_SP24.pdf
https://dl.acm.org/doi/pdf/10.1145/3563357.3564082
https://dl.acm.org/doi/pdf/10.1145/3470496.3527412
https://dl.acm.org/doi/pdf/10.1145/3470496.3527412

Non-Refereed / Non-Proceedings
• Nicholas Mosier, Hamed Nemati, John C. Mitchell, Caroline Trippel. “Analyzing and Exploiting Branch

Mispredictions in Microcode.” arXiv preprint arXiv:2501.12890v1. January 2025.
• Nicholas Mosier, Kate Eselius, Hamed Nemati, John C. Mitchell, Caroline Trippel. “Hardware-Software

Codesign for Mitigating Spectre.” In the Workshop on Programming Languages for Architecture
(PLARCH’23) at the 50th International Symposium on Computer Architecture. June, 2023.

In Preparation
• Nicholas Mosier, Hamed Nemati, John C. Mitchell, Caroline Trippel. “Taint Primitive Tracking: Transient

Hardware Enforcement of Software-Defined Architectural Protection Policies.” In preparation; planned
submission March 2025.

RESEARCH EXPERIENCE
µSpectre: a New Class of Transient Execution Attacks • Stanford University February 2024 – present

Research project with Hamed Nemati, and John C. Mitchell, and Caroline Trippel (PI)

• Discovered µSpectre, a new class of transient execution attacks that exploit microcode branch
mispredictions

• Identified that two previously discovered attacks, Rogue System Register Read and Zero Dividend
Injection, are in fact instances of µSpectre

• Identified a novel µSpectre vulnerability in Intel Goldmont microcode that allows an attacker to transiently
read from an architecturally-inaccessible microarchitectural buffer

• Proposed µSLH, a microcode-based mitigation for µSpectre attacks
• Ongoing work: Developing a tool for automatic black-box detection of vulnerable microcode branches on

Intel and AMD processors
• Prepublished: arXiv:2501.12890

Applying Taint Primitive Elimination to Industry Simulators • Intel Corporation June 2024 – August 2024

Research project with Scott Constable (mentor) and Carlos Rozas (manager)

• Implemented Taint Primitive Elimination, a simplified variant of Taint Primitive Tracking that I developed at
Stanford, on an industrial in-house simulator to gauge its performance impact

• Internship was a success, but cannot share more details due to non-disclosure agreements
Taint Primitive Tracking and Protection Type Extensions • Stanford University Fall 2022 – present

Research project with Hamed Nemati, John C. Mitchell, and Caroline Trippel (PI)

• Developed TPT-PTeX, the most performant Spectre defense to enforce speculative non-interference to
date

• Designed defense as two hardware-software codesigned ISA/hardware extensions: Protection Type
Extensions (PTeX) to allow software to communicate to hardware what data requires protection, and Taint
Primitive Tracking (TPT) to provably enforce in hardware that no protected data leaks transiently using
our theory of taint primitives

• Engaged in extensive hardware-software codesign to minimize hardware complexity by offloading
program leakage analysis to software via PTeX ISA extensions

• Implemented program leakage analysis as a LLVM x86 machine IR pass and modeled PTeX and TPT
hardware extensions in gem5 O3 processor simulator

• Evaluated TPT-PTeX on the SPEC CPU2017 benchmarks and observed 18%/45% runtime overhead on
an Intel Alder Lake E-core/P-core configuration, compared to the state of the art defense SPT with 30%/
67% overhead

https://arxiv.org/pdf/2501.12890
https://arxiv.org/pdf/2501.12890
https://hnemati.github.io/paper/plarch23.pdf
https://hnemati.github.io/paper/plarch23.pdf

• Developed Cross-Binary SimPoints, a new methodology for evaluating hardware-software codesigned
defenses in gem5 that overcomes the inaccuracies and inefficiencies of traditional SimPoint-based
techniques in this context

• Preparing to submit to TPT-PTeX to top-tier 2026 conference in March 2025
Comprehensive Compile-Time Spectre Mitigations • Stanford University • (GitHub) Spring 2022 – present

Research Project with Hamed Nemati, John C. Mitchell, Caroline Trippel (PI)

• Developed Serberus, the first comprehensive software-based Spectre mitigation for constant-time
cryptographic code

• Implemented Serberus as three programmer-transparent, intraprocedural LLVM passes, requiring no
secrecy labels or programmer annotations

• Used our novel theory of taint primitives to proved the completeness of Serberus’ security guarantees
• Evaluated Serberus on crypto benchmarks, on which it averages 21.5% overhead, outperforming state-

of-the-art Spectre mitigations despite offering stronger security guarantees
• Inspired Intel to codify the precise speculative semantics of Intel CET-IBT (used by Serberus) for existing

processor implementations in the Intel Software Developer Manual
• Published at S&P’24
• Ongoing work: Adapting Serberus to leverage Intel MPK to allow the protection of only secret-processing

functions (rather than all code), hypothesized to drastically lower performance overheads
Leakage Containment Models • Stanford University • (GitHub) Summer 2021 – Summer 2022

Research project with Hamed Nemati, John C. Mitchell, and Caroline Trippel (PI)
• Helped to develop leakage containment models, an axiomatic contract for modeling microarchitectural

leakage
• Designed and implemented Clou, a LLVM plugin for detecting Spectre-PHT and -STL leakage in C

programs at compile time
• Analyzed the widely-used libsodium and OpenSSL crypto libraries for Spectre vulnerabilities
• Discovered and reported multiple libsodium and OpenSSL Spectre vulnerabilities, covered in OpenSSL

blog post
• Clou’s findings inspired my discovery taint primitives, which serve as the formal foundation for all of my

subsequent Spectre defense projects
• Published at ISCA’22

PRESS
Spectre and Meltdown Attacks Against OpenSSL • OpenSSL Blog • (link)	 May 2022

• Discusses Spectre vulnerabilities discovered by our Spectre vulnerability detection tool, Clou

TALKS & PRESENTATIONS
Title Venue Date

Protection Type Extensions Intel Security & Privacy Research Intern
Report-Out

Aug. 2024

Serberus: Protecting Cryptographic Code from
Spectres at Compile Time (link)

IEEE Symposium on Security and Privacy
(S&P’24)

May 2024

Hardware-Software Codesign for Efficiently
Mitigating Transient Execution Attacks

Intel Labs Security and Privacy Research
Tech Talks

Feb. 2024

Serberus: Protecting Cryptographic Code from
Spectres at Compile Time

Intel Scalable Assurance Annual
Workshop

Sep. 2023

Hardware-Software Codesign for Mitigating
Spectre (link)

Programming Languages for Architecture
(PLARCH’23, link)

Jun 2023

https://github.com/nmosier/llsct
https://github.com/nmosier/clou
https://www.openssl.org/blog/blog/2022/05/13/spectre-meltdown/
https://www.openssl.org/blog/blog/2022/05/13/spectre-meltdown/
https://www.youtube.com/watch?app=desktop&v=w9NVVLBcDZU
https://pldi23.sigplan.org/details/plarch-2023-papers/14/Hardware-Software-Codesign-for-Mitigating-Spectre
https://pldi23.sigplan.org/home/plarch-2023

RELEVANT COURSEWORK
• Stanford University: Formal Methods for Computer Systems, Computer Systems Architecture, Computer

and Network Security, Program Analysis & Optimization, Artificial Intelligence, Programming Languages

• Middlebury College: Systems Security, Compiler Design, Operating Systems, Embedded Systems,

Systems Programming, Computer Architecture, Parallel Computing, Algorithms & Complexity, Graph
Theory, Combinatorics

SKILLS AND INTERESTS
Technical Skills

• Programming languages: C, C++, x86, bash, Python, Swift, Java, SystemVerilog, ARM, RISC-V, z80
• UNIX-based programming environments (Linux, macOS, FreeBSD, WSL)
• Libraries and projects: gem5, LLVM
• Tools: Ghidra, gdb, Docker, make, CMake, git, KVM, Snakemake

Interests: hardware and binary security, compiler design, formal methods, reverse engineering, computer
architecture, bug hunting

Bug Hunting: discovered and received payout for 7 remote code execution (RCE) vulnerabilities in video
game software

Open Source Contributions

• gem5: Merged 30 patches into the widely-used gem5 academic simulator, fixing 20 correctness bugs,
fixing 3 performance issues, and adding 4 missing features. As a direct result of my contributions, gem5’s
KVM and O3 CPUs can now run the SPEC CPU2017 Integer and Floating-Point benchmarks.

Competitive Programming • Middlebury College
• Ran weekly programming contest practice sessions (Spring 2017 – Fall 2019)
• Participated in many programming contests on teams representing Middlebury College, such as the

ACM-ICPC Preliminary Contest (Fall 2016 & 2017) and CCSCNE Contest (Spring 2017, 2019)

Comprehensively Mitigating Transient Execution
Attacks (link)

Stanford Computer Forum Annual
Meeting: Security Workshop (link)

Apr 2023

Axiomatic Hardware-Software Contracts for
Security (link)

49th International Symposium for
Computer Architecture (ISCA’22)

Jun 2022

Axiomatic Hardware-Software Contracts for
Security (link)

Stanford Computer Forum Annual
Meeting: Security Workshop (link)

Apr 2022

Bypassing ASLR with Speculative Buffer
Overflows

Middlebury College Computer Science
Undergraduate Thesis Presentation

May 2020

ROP with a 2nd Stack, or This Exploit is a
Recursive Fibonacci Sequence Generator (link)

BSides Las Vegas (link) Aug. 2019

https://youtu.be/cnz_jmIS_A4
https://forum.stanford.edu/events/annual-meeting-archives/2023-annual-affiliates-meeting/day-3-security-workshop
https://www.iscaconf.org/isca2022/slides/isca22-mosier.pdf
https://www.youtube.com/watch?v=S_qHgcrQfOc&list=PLqYw1C4YGfr3uC5jPER2dXiYEF2P_dG-5&index=4
https://forum.stanford.edu/events/annual-meeting-archives/2022-annual-affiliates-meeting/annual-meeting-2022-security-workshop
https://www.youtube.com/watch?v=ifKSi_bAPag&t=18730s
https://archive.bsideslv.org/2019/schedule-2/
https://github.com/gem5/gem5/issues?q=state:closed%20is:pr%20author:nmosier

