Hardware-Software Codesign
for Mitigating Spectre

Nicholas Mosier,' Kate Eselius,'! Hamed Nemati,'? John Mitchell,’

Caroline Trippel
PLARCH'23 * June 17,2023

'Stanford University 2CISPA Helmholtz Center for Information Security

Hardware Side-Channel Attacks

@ Victim Attacker &

y = A‘iunsafe] </.>"

/

transmitter:
unsdfe instruction whose execution creates @ hardware side-channel

operand-dependent resource usage

Spectre Attacks

4

1: if (x < len) { < mispredicted branch introducing speculative execution

&

speculatively accessed secret —> 2 y = A[x];
3: z = Blv]; < transmitter (load) which leaks secret
4: }

Spectre attacks exploit control- or data-flow mispredictions in hardware to
speculatively leak sensitive data via transmitters.

OpenSSL

Cryptography and SSL/TLS Toolkit

Spectre can leak cryptographic keys... :
P yptograp 4 Spectre can leak arbitrary kernel memory, 4
including memory of other processes...

Spectre Attacks and Defenses

%

attacks

o

defenses

Spectre-RSB

Spectre-PHT P

(conditifnal branch prediction) (return address prediction) Spectre-PSF
SPeCtI"e-STL (alias prediction)

Spectre-BTB

(indirect branch prediction)

(store-to-load forwarding prediction)

2017

STT

PSFD

[Yu+ MICRO’19] IPRED_DIS
) SSBD (Intel, AMD) (Inte)
retpoline (Intel, AMD) NDA SPT
(GP2) [Weisse+ MICRO'19] [Choudhary+ MICRO"21]
SLH SpecCFI
[Carruth+] [Koruyeh+ S&P'20] Dolma
LEENCE [Loughlin+ USENIX21]

(Intel, AMD)

kg OpenSSL

ptography and SSL/TLS Toolkit

Spectre and Meltdown Attacks Against OpenSSL

The OpenSSL Technical Committee (OTC) was recently made aware of several potential attacks against the OpenSSL
libraries which might permit information leakage via the Spectre attack.! Although there are currently no known exploits
for the Spectre attacks identified, it is plausible that some of them might be exploitable.

Local side channel attacks, such as these, are outside the scope of our security policy, however the project generally does
introduce mitigations when they are discovered. In this case, the OTC has decided that these attacks will not be mitigated
by changes to the OpenSSL code base. The full reasoning behind this is given below.

Spectre variant 1

For the Spectre variant 1, vulnerable kernel code (as determined by code au-
dit or scanning tools) is annotated on a case by case basis to use nospec ac-

cessor macros for bounds clipping [2] to avoid any usable disclosure gadgets.

However, it may not cover all attack vectors for Spectre variant 1.

The Spectre Mitigation Challenge

Efficiently mitigating all Spectre leakage due to any combination of speculation primitives is hard.

PHT |BTB | RSB | STL | PSF | Deployable? | General? | Overhead

STT [Yu+ MICRO’19] VAN VAN A IRV | 4,595
: Comprehensive NDA [Weisse+ MICRO’ 9] V2 A B RV v 45%
e hardware mitigations =
Dolma [Loughlin+ USENIX’21] v v v v v 42%
A High complexity
SPT [Choudhary+ MICRO’21] v v v v v v 42%
—o- Hardware SSBD (Intel, AMD) J v Y | 095
_°.° speculation controls
. PSFD (Intel, AMD) Y4 v N4 22 ik
ﬂ High overhead;
Incomplete IPRED_DIS (Intel, AMD) v v N4 < | 9k
Software-only Speculative load hardening v v N4 ~75%
/> mitigations
& retpoline v + v v N pkk
A High overhead;
Incomplete Naive LFENCE insertion v v o/ v v >300%
Best deployable v v v oV v V4 > | 00 %+

10

SERBERUS

Comprehensive, Efficient, Proven Spectre Mitigation for Constant-Time Crypto Code

k3 OpensSSL

Cryptography and SSL/TLS Toolkit

Constant-time code does not
leak secrets non-speculatively
(via hardware side-channels).

vulnerable secu.re
@ﬁ constant-time code a N\ constant-time code
OpenSSL SERBERUS e </.>..
<> softwa o
Spbectre-aware 11 I PHT
L2 pHT p _ mitigation o

programmin
4|/ BTB contract y @ BTB G
@ RSB
fine-grained ®sTL

‘@J STL lightweight mitigation pF
@J PSF HW support primitives &

Co-Design Area |: Constraining Speculation

SERBERUS speculation model

o

Default speculation model

Features on existing x86 HW
|. indirect branch tracking
2. shadow stack

unconstrained speculative 3. RRSBA _DIS constrained speculative
control- and data-flow 4 PSFD control- and data-flow
Precise static program analysis
Precise static program analysis easy!

intractable!

Co-design opportunity: other low-cost speculation
constraints to make static analyses more precise

Co-Design Area 2: Programming Contract

Constant-time (CT) programming permits SERBERUS’ Solution:

vulnerable code patterns that inhibit static constant-time (CTS) programming
efficient mitigations extends constant-time with:
A Latent CT violations @ require static security types of variables
if (0)

if (0)

x = Alsecret]; x = A[public]:

Spectre-aware calling convention that forbids
passing secret arguments by value

©

safe(public);
safe(secret); (p)
. \ ' Co-design opportunity: other modest
int leak(int idx) { programming contract requirements

A Passing secret arguments by value

return Alidx]; } to make static analyses more precise
19

SERBERUS’ Passes

* Consists of three intraprocedural passes

* Fence Insertion:inserts LFENCEs into program
* Function-Private Stacks: assigns distinct stacks to each function to prevent

Spectre leakage due to stack sharing
* Register Cleaning: zeroes out registers that may hold secrets before leaving the

function

SERBERUS’s LLVM passes
| secure
| CTS program

‘@J vulnerable

CTS program)
Fence FuPn.ctlfn- Register
OBl d nsertion S';;/:k: Cleaning — />

20

SERBERUS’ Performance

@
200 S B Ifence+retpoline+ssbd
S I slh+retpoline+ssbd [l SERBERUS
—
1751
1504 SERBERUS outperforms state-of-the-art
2 mitigations in the crypto primitives we evaluate
125- o while offering stronger security guarantees
$
el
g 1004
z : : :
© 75 — However, SERBERUS incurs high overhead in
A @ other application domains...
50- o < ... e.g,>300% overhead for SPEC CPU2017
~ N
S
25+ e n
2 en - 2 S 2 “ <
2 o O \O
O_
I
libsoldium libsoldium opelnssl opelnssl opelnssl opelnssl georlnean geomean
sha256 sha256 sha256 sha256 chacha20 curve255 (all) (8KB)

64B 8KB 64B 8KB 8KB 64B |

SERBERUS’ Fence Insertion Pass

* Frames speculation fence (LFENCE) insertion as a minimum
directed multicut problem over the transient control-flow graph

* Sources are loads or stores that may access secrets

* Sinks are dependent transmitters
Original Procedure Transient CFG

Mitigated Procedure

while (t@® = p->valid,

while (p->valid) { LFENCE (),
process(p); t0) {
P = p->next; process(p);
} P = p->next;
Source-Sink Pairs I,| | call process(p) LFENCE () ;

} d disabli diti |
Iy, I I,,I I reduces to disabling conditiona
(T, 1) (Ia, To) ° wj A branch prediction...
(I3!I2) l\A

I, ret 23

Coarse-Grained Mitigation Problem

* precise static analyses
software < / > * precise mitigation requirements

Co-design opportunity:
expose fine-grained mitigation
primitives in the ISA

L :

¥ coarse-grained

A communication bottleneck E «— mitigation primitives
5 (e.g., LFENCE)

* precise runtime information
precise enforcement of required mitigations

hardware

Example Fine-Grained Mitigation: NOSPEC

* NOSPEC: instruction flag that delays an instruction’s execution until it

becomes non-speculative:

NOSPEC mov rsi, [rdi]

Original Procedure Coarsely-Mitigated Procedure

while (p->valid) { while (t@ = p->valid,
process(p); LFENCE(),
p = p->nhext; t0) {
} process(p);
p = p->next;
LFENCE () ;

} reduces to disabling conditional
A branch prediction...

Finely-Mitigated Procedure

while (nospec(p->valid)) {
process(p);
p = nospec(p->next);

}

allows secure speculation
to proceed!

25

END

Hardware Side-Channel Attacks

@ Victim Attacker &

y = A‘iunsafe] </.>"

R

transmitter:
unsafe instruction that exhibiting @ hardware side-channel

operand-dependent resource usage

Constant-Time (CT) Programming

forbidden

control-flow if (unsafe)

load y = Alunsafe];

store Alunsafe] = y;

CT programs do not pass secrets to
sensitive (unsafe) transmitter
operands in any sequential execution

division X =a/b;

Constant-time programs are G

sequentially
secure

Spectre Attacks on CT Code

However, Spectre attacks can still
exploit transient execution to steer

secrets to transient transmitters

Constant-time programs are G but

sequentially
secure

N

Q@

transiently
insecure

permitted by CT

transient
(instruction does not commit)

36

Spectre Terminology

correct sequential execution

transient execution

mispredict
speculation primitive
(control- or data-flow prediction)

4@3} Spectre leakage

O\ transient transmitter

with secret operand

37

Speculation Primitives

. f = &g; int f(x) {
if (x < A_len) (*f)(secret); return x;
< $ b
control-flow Bly] Alx]
speculation primitives Alx]
PHT BTB RSB
conditional branch indirect branch prediction return address prediction
X = secret; X_= secret;
data-flow x\@i y =
speculation primitives Alx] Alyl
STL PSF

store-to-load forwarding L ,
predictive store forwarding

38

Mitigating Spectre in Software

Efficiently mitigating all Spectre leakage due to any combination of

{PHT, BTB, RSB, STL, PSF} is hard.

Two approaches:

@ Disable speculation primitive

‘ Prevent secret-dependent transmitters

Mitigation Leakage |Proof PHT BTB|RSB|STL|PSF
INTEL-LFENCE - - &l |- - -

LLVM-SLH [-Jaxen| X | © | - | -

RETPOLINE - - - || T - -
SSBD - - | <X |
PSFD - - - - | A

BLADE et v @ | - | - | - | -
SWIVEL-CET ﬁmem X | @ @ @ & ||
SERBERUS (ours) et 1@ 0 | 0 | 0 &

SERBERUS Insights

I. Hardware model: CFl protections enable comprehensive analysis
of transient control-flow

2. Software requirements: static constant-time (CTS) overcomes
unsafe code patterns permitted by CT programming

3. Leakage characterization: Spectre leakage is due to four classes
of taint primitives, which assign secrets to publicly-typed variables

SERBERUS’ Hardware Model

Constraining transient control-flow

foo:
CALL
RET
bar: Y| RET

Unconstrained transient

control-flow

Intractable to analyze...

CFl protections

foo:

bar :

CALL

RET

RET

Constraining transient data-flow

(] PSF

SERBERUS disables PSF, since it is
intractable to efficiently mitigate in
software.

SERBERUS constrains transient control-flow

with CFIl protections from Intel CET:

* Indirect branch tracking (forward-edge)

Easy to analyze!

* Shadow stack (backward-edge)

41

SERBERUS’ Software Requirements: CT Limitations

Is CT at least a good starting place for Spectre mitigations! No.

Two unsafe CT code patterns almost always leak secrets transiently
and inhibit efficient mitigations:

o if (o
@ Latent CT violations X(:)A[Secreﬂ;

@ Spectre-unaware calling convention process(secret);

Constant-Time Limitation 2

@ Spectre-unaware calling convention

process(secret);
\/
int process(int secret) {
return secret + 1;

}

int leak(int idx) {

return A[idx]:
}

Underlying issue: passing/returning secrets
by value is inherently dangerous

We propose static constant-time (CTYS),

Solution: which extends CT to prohibit these unsafe code patterns @ and @

Taint Primitives in CTS Programs

* Taint primitive: instruction that assigned a secret
value to a publicly-typed variable when executed

* Spectre leakage in CTS programs occurs when a
taint primitive passes its result to a transmitter

* Four classes of taint primitives in CTS programs

* Suggests novel Spectre mitigation approach:
{X| Eliminate taint primitive
@ Prevent taint-primitive-dependent transmitters

NCAL
non-constant-address load
X = *p;

y = Alx];
NCAS
non-constant-address store

X = 0;
*p = secret;
y = Alx];

TKL
uninitialized stack load
int x = 0;

y = A[X];
SARG

unexpectedly secret argument

foo(int Xx):

y = Alx];

SERBERUS Overview

* SERBERUS eliminates all secret leakage in CTS programs due to any
combination of {PHT, BTB, RSB, STL} speculation primitives.

* Consists of three intraprocedural passes

SERBERUS
= secure
ﬁ vulnerable | CTS program
CTS program
= oias Function- Register
</> Insertion Private Cleaning m—) </>
Stacks
/N NCAL © NCAL
/N NCAS <X] NCAs <X] sTKL SARG (%] NCAS
/N STKL ‘ NCAL ‘ NCAL ‘ NCAL <KISTKL
/\ SARG <X] SARG e

SERBERUS’ Fence Insertion Pass

* Frames speculation fence (LFENCE) insertion as a min-cut problem over
the transient control-flow graph

* Sources are candidate NCAL or NCAS taint primitives

* Sinks are dependent transmitters and instructions that may facilitate
dependent transmitters

Transient CFG

Procedure

Src a

foo: src a

LFENCE
sink b
sink b
src b
src b sink a
sink a

LFENCE

46

SERBERUS’ Function-Private Stacks Pass

. , {X] sTKL
Stack sharing is the root cause of STKL: a publicly-typed uninitialized stack load
load may read a stale secret from prior procedure’s stack frame. int x = 0;
y = A[X];

SP »

foo() {
X = secret;

} SP -»

SERBERUS’ Function-Private Stacks Pass
{X] sTKL

Stack sharing is the root cause of STKL: a publicly-typed uninitialized stack load
load may read a stale secret from prior procedure’s stack frame. int x = 0;
y = A[X];
SP »
X

Solution: allocate a private stack to each procedure.

foo: ENDCALL

+ LD [ZR+PSPgr],SP // load private SP
bar() { | SUB SP, SP, k // frame allocation
prologue + LD [SP+0],ZR // probe for overflow
y @' + ST [ZR+PSPgr],SP // store private SP

N
I
E

. CALL rl
callsite + LD [ZR+PSPg]1,SP // load private SP

ADD SP,SP,k // frame deallocation
+ ST [ZR+PSPg]1,SP // store private SP
RET

+ LD [SP+0],ZR // probe for underflow
epilogue

SERBERUS’ Register Cleaning Pass

{X] SARG
unexpectedly secret argument
foo(int Xx):
y = Alx];
foo:
MOV r2, ©
Zero out non-argument MOV r3, ©
registers before every CALL ™
call/return MOV r1, ©
MOV r2, ©
MOV r3, ©

RET

49

LLSCT: Implementation of SERBERUS for LLVM

* Implemented as three of LLVM IR and machine passes

* Requires no user annotations
* Benchmarked runtime performance overhead over insecure baseline

* Evaluated against state-of-the-art mitigations:
* Ifence+retpoline+ssbd
* slh+retpoline+ssbd

* Testing setup: Intel 12t"-gen Core i9-12900KS processor (supports
Intel CET)

* Workloads: crypto primitives from OpenSSL, Libsodium, and HACL*

overhead (%)

o
o
~
N

200~ 3
=
B Ifence+retpoline+ssbd
1754 [slh+retpoline+ssbd B LLSCT
150+
o
@\
@\
1254 —
100~
Q
Ch S >
)
cn Vg
© !
504 o0 lQ
™ @)
\O < <
@\
25- SESl
\O — <t
Hea) .
:3 NI \O
O_
I I I I I I I I
libsodium libsodium openssl openssl openssl openssl] geomean geomean
sha256 sha256 sha256 sha256 chacha20 curve255 (all) (8KB)

64B 8KB 64B 8KB 8KB 64B

Conclusions and Future Work

* SERBERUS is the first software mitigation for Spectre-
PHT/BTB/RSB/STL leakage in CT programs

* LLSCT: implementation of SERBERUS for LLVM

* LLSCT outperforms state-of-the-art mitigations in the crypto
primitives we evaluate while offering stronger security guarantees

* Future work: overcoming performance limitations of applying LLSCT
more broadly in non-crypto-code

Questions!

nmosier@stanford.edu

R o
N OO0
a A8«
200 1 W
-
— >
1754 . 8
= - 1 Ifence+tretpoline+ssbd
1504 N . 2 | slh+retpoline+ssbd
. on
N —|
125 > = u] LLSCT
S — N
§ 100 | 1 e fime
° 751 52 B S 2F o
= | o = oYX o0
504 | %o e g2 < > B
8y oo ‘ 82 o
=—CN : . o [
I o0 =T — 00
LB = e m: N e
0_
— T — T T T T T T T
f= | FENCE libsodium libsodium openssl openssl openssl openssl geomean geomean
i sha256 sha256 sha256 sha256 chacha20 curve25519 (all) (8KB)
r = retpoline 64B SKB 64B SKB SKB 64B

slh = speculative load hardening
ssbd = STL disable

fps = function-private stacks

59

Mitigating Spectre in Software

Efficiently mitigating all Spectre leakage due to any combination of

{PHT, BTB, RSB, STL, PSF} is hard.

Two approaches:
@ Disable speculation primitive

‘ Prevent secret-dependent transmitters

Three tools:

[llll Serialization instructions (e.g., LFENCE)
/ Code rewriting (e.g., SLH)

3_% Speculation controls (e.g., SSBD)

Mitigation

Leakage

Proof

PHT

BTB

STL

PSF

INTEL-LFENCE [29]

RSB

LLVM-SLH [30]

H' ﬂ&xr(ﬁl

@R

RETPOLINE [31]

IPREDD [32]

SSBD [33]

@Al

PSFD [34]

F+RETP+SSBD

S+RETP+SSBD

arch

BLADE [35]

SWIVEL-CET [36]

mem

SERBERUS (ours)

—|——|—|[——
. . . |
| | = —]
@]
+

aQ
-+

SR

000 R

00 QAR

R RAIA ¢

R Q& QR &

