
Hardware-Software Codesign
for Mitigating Spectre

Nicholas Mosier,1 Kate Eselius,1 Hamed Nemati,1,2 John Mitchell,1
Caroline Trippel1

PLARCH’23 • June 17, 2023

1

1Stanford University 2CISPA Helmholtz Center for Information Security

Victim Attacker

hardware side-channel

Hardware Side-Channel Attacks

3

y = A[unsafe]

$

😈😇

transmitter:
unsafe instruction whose execution creates

operand-dependent resource usage

Spectre Attacks

4

1: if (x < len) {
2: y = A[x];
3: z = B[y];
4: }

Spectre attacks exploit control- or data-flow mispredictions in hardware to
speculatively leak sensitive data via transmitters.

speculatively accessed secret
transmitter (load) which leaks secret

mispredicted branch introducing speculative execution

Spectre can leak cryptographic keys… Spectre can leak arbitrary kernel memory,
including memory of other processes…

Spectre Attacks and Defenses

5

2017 2018 2019 2020 2021 2022 2023

Spectre-PHT
(conditional branch prediction)

Spectre-STL
(store-to-load forwarding prediction)

Spectre-PSF
(alias prediction)

STT
[Yu+ MICRO’19]

NDA
[Weisse+ MICRO’19]

Dolma
[Loughlin+ USENIX’21]

SPT
[Choudhary+ MICRO’21]

SSBD
(Intel, AMD)

retpoline
(GPZ)

SpecCFI
[Koruyeh+ S&P’20]

PSFD
(Intel, AMD)

IPRED_DIS
(Intel)

SLH
[Carruth+]

LFENCE
(Intel, AMD)

Spectre-BTB
(indirect branch prediction)

Spectre-RSB
(return address prediction)

attacks

defenses

7

The Spectre Mitigation Challenge

10

Efficiently mitigating all Spectre leakage due to any combination of speculation primitives is hard.

PHT BTB RSB STL PSF Deployable? General? Overhead

STT [Yu+ MICRO’19] ✓ ✓ ✓ ✓ ✓ 14.5%***

NDA [Weisse+ MICRO’19] ✓ ✓ ✓ ✓ ✓ ✓ 45%

Dolma [Loughlin+ USENIX’21] ✓ ✓ ✓ ✓ ✓ 42%

SPT [Choudhary+ MICRO’21] ✓ ✓ ✓ ✓ ✓ ✓ 42%

SSBD (Intel, AMD) ✓ ✓ ✓ ✓ 10%***

PSFD (Intel, AMD) ✓ ✓ ✓ ???***

IPRED_DIS (Intel, AMD) ✓ ✓ ✓ <1%***

Speculative load hardening ✓ ✓ ✓ ~75%

retpoline ✓ + ✓ ✓ ???***

Naive LFENCE insertion ✓ ✓ ✓ ✓ ✓ >300%

Best deployable ✓ ✓ ✓ ✓ ✓ ✓ >100%***

Comprehensive
hardware mitigations

High complexity

Hardware
speculation controls

High overhead;
Incomplete

Software-only
mitigations

High overhead;
Incomplete

SERBERUS
Comprehensive, Efficient, Proven Spectre Mitigation for Constant-Time Crypto Code

14

SERBERUS
software
mitigationPHT

BTB

RSB

STL

vulnerable
constant-time code

secure
constant-time code

PHT

BTB

RSB

STL

15

Constant-time code does not
leak secrets non-speculatively
(via hardware side-channels).

PSF
⌫ PSF

Spectre-aware
programming
contract

lightweight
HW support

fine-grained
mitigation
primitives

Co-Design Area 1: Constraining Speculation

17

unconstrained speculative
control- and data-flow

constrained speculative
control- and data-flow

Features on existing x86 HW
1. indirect branch tracking
2. shadow stack
3. RRSBA_DIS
4. PSFD

Precise static program analysis
intractable!

Precise static program analysis
easy!

Default speculation model SERBERUS speculation model

Co-design opportunity: other low-cost speculation
constraints to make static analyses more precise

Co-Design Area 2: Programming Contract

19

Constant-time (CT) programming permits
vulnerable code patterns that inhibit
efficient mitigations

Latent CT violations

if (0)
x = A[secret];

safe(secret);

int leak(int idx) {
return A[idx]; }

Passing secret arguments by value

1

2

Co-design opportunity: other modest
programming contract requirements
to make static analyses more precise

SERBERUS’ Solution:
static constant-time (CTS) programming
extends constant-time with:

1

2

require static security types of variables

Spectre-aware calling convention that forbids
passing secret arguments by value

if (0)
x = A[public];

safe(public);

SERBERUS’ Passes

• Consists of three intraprocedural passes
• Fence Insertion: inserts LFENCEs into program
• Function-Private Stacks: assigns distinct stacks to each function to prevent

Spectre leakage due to stack sharing
• Register Cleaning: zeroes out registers that may hold secrets before leaving the

function

20

vulnerable
CTS program

Fence
Insertion

Function-
Private
Stacks

Register
Cleaning

secure
CTS program

SERBERUS’s LLVM passes

21

libsodium
salsa20

64B

libsodium
sha256

64B

libsodium
sha256
8KB

hacl
chacha20

8KB

hacl
poly1305

8KB

hacl
curve25519

64B

openssl
sha256

64B

openssl
sha256
8KB

openssl
chacha20

8KB

openssl
curve25519

64B

geomean
(all)

geomean
(8KB)

0

25

50

75

100

125

150

175

200

ov
er

he
ad

(%
)

99
.0

70
.5

26
.7

20
.1

10
4.

6

23
.1

27
3.

8

45
.3

12
2.

6

12
.5

67
.8

58
.7

1.
2

69
.1

38
.8

15
.1

1.
6

19
.6

11
1.

8

6.
6 11

.9

10
.5 24

.9

14
.1

13
.4

16
.1

1.
3

16
.5

0.
9

16
.2

18
4.

4

3.
3 10

.6

8.
3 20

.4

6.
4

lfence+retpoline+ssbd
slh+retpoline+ssbd LLSCT

libsodium
salsa20

64B

libsodium
sha256

64B

libsodium
sha256
8KB

hacl
chacha20

8KB

hacl
poly1305

8KB

hacl
curve25519

64B

openssl
sha256

64B

openssl
sha256
8KB

openssl
chacha20

8KB

openssl
curve25519

64B

geomean
(all)

geomean
(8KB)

0

25

50

75

100

125

150

175

200

ov
er

he
ad

(%
)

99
.0

70
.5

26
.7

20
.1

10
4.

6

23
.1

27
3.

8

45
.3

12
2.

6

12
.5

67
.8

58
.7

1.
2

69
.1

38
.8

15
.1

1.
6

19
.6

11
1.

8

6.
6 11

.9

10
.5 24

.9

14
.1

13
.4

16
.1

1.
3

16
.5

0.
9

16
.2

18
4.

4

3.
3 10

.6

8.
3 20

.4

6.
4

lfence+retpoline+ssbd
slh+retpoline+ssbd LLSCT

libsodium
salsa20

64B

libsodium
sha256

64B

libsodium
sha256
8KB

hacl
chacha20

8KB

hacl
poly1305

8KB

hacl
curve25519

64B

openssl
sha256

64B

openssl
sha256
8KB

openssl
chacha20

8KB

openssl
curve25519

64B

geomean
(all)

geomean
(8KB)

0

25

50

75

100

125

150

175

200

ov
er

he
ad

(%
)

99
.0

70
.5

26
.7

20
.1

10
4.

6

23
.1

27
3.

8

45
.3

12
2.

6

12
.5

67
.8

58
.7

1.
2

69
.1

38
.8

15
.1

1.
6

19
.6

11
1.

8

6.
6 11

.9

10
.5 24

.9

14
.1

13
.4

16
.1

1.
3

16
.5

0.
9

16
.2

18
4.

4

3.
3 10

.6

8.
3 20

.4

6.
4

lfence+retpoline+ssbd
slh+retpoline+ssbd LLSCT

libsodium
salsa20

64B

libsodium
sha256

64B

libsodium
sha256
8KB

hacl
chacha20

8KB

hacl
poly1305

8KB

hacl
curve25519

64B

openssl
sha256

64B

openssl
sha256
8KB

openssl
chacha20

8KB

openssl
curve25519

64B

geomean
(all)

geomean
(8KB)

0

25

50

75

100

125

150

175

200

ov
er

he
ad

(%
)

99
.0

70
.5

26
.7

20
.1

10
4.

6

23
.1

27
3.

8

45
.3

12
2.

6

12
.5

67
.8

58
.7

1.
2

69
.1

38
.8

15
.1

1.
6

19
.6

11
1.

8

6.
6 11

.9

10
.5 24

.9

14
.1

13
.4

16
.1

1.
3

16
.5

0.
9

16
.2

18
4.

4

3.
3 10

.6

8.
3 20

.4

6.
4

lfence+retpoline+ssbd
slh+retpoline+ssbd LLSCTSERBERUS

SERBERUS’ Performance

SERBERUS outperforms state-of-the-art
mitigations in the crypto primitives we evaluate
while offering stronger security guarantees

However, SERBERUS incurs high overhead in
other application domains…
… e.g., >300% overhead for SPEC CPU2017

SERBERUS’ Fence Insertion Pass
• Frames speculation fence (LFENCE) insertion as a minimum

directed multicut problem over the transient control-flow graph
• Sources are loads or stores that may access secrets
• Sinks are dependent transmitters

23

Original Procedure Transient CFG

while (p->valid) {
process(p);
p = p->next;

}

t0 <- p->valid

bne t0, .done

call process(p)

p <- p->next

ret

I0

I1

I2

I3

I4

(I0,I1) (I3,I0)

(I3,I2)

Source-Sink Pairs

while (t0 = p->valid,
LFENCE(),
t0){

process(p);
p = p->next;
LFENCE();

}

Mitigated Procedure

reduces to disabling conditional
branch prediction…

Coarse-Grained Mitigation Problem

24

LF
E

N
C

E

• precise static analyses
• precise mitigation requirements
• …

• precise runtime information
• precise enforcement of required mitigations
• …

coarse-grained
mitigation primitives
(e.g., LFENCE)

communication bottleneck

Co-design opportunity:
expose fine-grained mitigation
primitives in the ISA

software

hardware

Example Fine-Grained Mitigation: NOSPEC

• NOSPEC: instruction flag that delays an instruction’s execution until it
becomes non-speculative:

NOSPEC mov rsi,[rdi]

25

Original Procedure

while (p->valid) {
process(p);
p = p->next;

}

while (nospec(p->valid)) {
process(p);
p = nospec(p->next);

}

Finely-Mitigated Procedure

while (t0 = p->valid,
LFENCE(),
t0){

process(p);
p = p->next;
LFENCE();

}

Coarsely-Mitigated Procedure

reduces to disabling conditional
branch prediction…

allows secure speculation
to proceed!

END

29

Victim Attacker

hardware side-channel

Hardware Side-Channel Attacks

34

y = A[unsafe]

$

😈😇

transmitter:
unsafe instruction that exhibiting

operand-dependent resource usage

Constant-Time (CT) Programming

CT programs do not pass secrets to
sensitive (unsafe) transmitter
operands in any sequential execution

forbidden

y = A[unsafe];load

A[unsafe] = y;store

if (unsafe)control-flow

x = a / b;division

Constant-time programs are
sequentially

secure
35

Spectre Attacks on CT Code

However, Spectre attacks can still
exploit transient execution to steer
secrets to transient transmitters

if (x < A_len)
y = A[x];
z = B[y];

permitted by CT

transient
(instruction does not commit)Constant-time programs are

sequentially
secure

transiently
insecure

but

36

Spectre Terminology

37

sequential execution

transient execution

speculation primitive
(control- or data-flow prediction)

mispredict

correct

transient transmitter
with secret operand

Spectre leakage

Speculation Primitives

38

if (x < A_len) {
y = A[x];

z = B[y];
}

PHT
conditional branch

f = &g;
(*f)(secret);

int h(int x) {
return A[x];

}

BTB
indirect branch prediction

int f(x) {
return x;

}
int g(x) {
y = h(x);
return A[x]; }

RSB
return address prediction

x = secret;
x = 0;
y = A[x];

STL
store-to-load forwarding

control-flow
speculation primitives

x = secret;
y = 0
y = A[y];

PSF
predictive store forwarding

data-flow
speculation primitives

Serberus: Protecting Cryptographic Code from Spectres at Compile-Time

Abstract—We design and formally prove the completeness
of SERBERUS, the first comprehensive software mitigation for
hardening constant-time (CT) code against Spectre attacks
involving the following speculation primitives: PHT, BTB, RSB,
STL, and/or PSF. SERBERUS is based on three insights. First,
hardware control-flow integrity (CFI) protections restrict tran-
sient control-flow to the extent that it may be comprehensively
considered by software analyses. Second, traditional definitions
of CT code permit two unsafe code patterns that are almost
always capable of leaking secrets during transient execution.
Finally, once these code patterns are addressed, all Spectre
leakage of secrets in CT programs can be attributed to one
of four classes of taint primitives, instructions which can tran-
siently assign a secret value to a publicly-typed variable. We
empirically evaluate SERBERUS on cryptographic primitives in
the OPENSSL, LIBSODIUM, and HACL* libraries. SERBERUS
introduces 20.4% runtime overhead on average, compared to
24.9% for the next closest state-of-the-art software mitigation,
which features weaker security guarantees.

1. Introduction

The constant-time (CT) programming approach [1]–
[15] was designed to support the safe execution of secret-
processing programs, like cryptographic code [16]–[18], in
the face of hardware side-channel attacks. Concretely, CT
programming requires that only safe instructions, which cre-
ate operand-independent hardware resource usage, process
secrets. Unsafe instructions, or transmitters [19], typically
include: control-flow instructions, memory accesses, and
variable-time instructions (e.g., floating-point [20] or integer
division [13] instructions).

Unfortunately, common hardware optimizations enable
transient execution1 to steer secrets towards the operands
of (transient) transmitters, circumventing CT protections. In
Spectre attacks (our focus, §2.2) transient execution results
from control- or data-flow mispredictions at runtime [21]. On
modern processors, there are five well-documented sources
of such (mis)predictions, called speculation primitives [22]:
conditional branch prediction (PHT) [23], indirect branch
prediction (BTB) [23], store-to-load forwarding prediction
(STL) [24], predictive store forwarding (PSF) [25]–[27], and
return address prediction (RSB) [28].2

Hardening CT programs against all Spectre attacks in-
volving any combination of the aforementioned speculation
primitives is difficult. Suitable hardware mitigations have
been proposed [37]–[40], but require complex design changes

1Transient execution refers to the execution of instructions that are never
architecturally committed [21].

2Abbreviations are borrowed from recent work which surveys Spectre
attacks and software defenses [21], [25].

Mitigation Leakage Proof PHT BTB RSB STL PSF
INTEL-LFENCE [29] - - - - - -

LLVM-SLH [30] J · Karch 7 - - - -
RETPOLINE [31] - - - " - -

IPREDD [32] - - - - - -
SSBD [33] - - - - -
PSFD [34] - - - - - -

F+RETP+SSBD - - -
S+RETP+SSBD J · Karch 7 -
BLADE [35] J · Kct 3 - - - -

SWIVEL-CET [36] J · Kmem 7
SERBERUS (ours) J · Kct 3

TABLE 1: SERBERUS versus software mitigations for existing hardware.
Leakage: SERBERUS targets the CT leakage model J · Kct; J · Kmem and
J · Karch are inapplicable to CT code [25]. Speculation primitives: com-
plete mitigation without disabling speculation; disables/blocks spec-
ulation primitive (for implicitly disabled); incomplete mitigation;
" creates opportunities for speculation primitive to introduce transient
execution; - no mitigation. SERBERUS is the only defense for the CT
leakage model to mitigate leakage due to all speculation primitives.

that limit their adoption. Several software mitigations tar-
get existing hardware (Tab. 1). However, the most robust of
these, Swivel-CET [36], is not suitable for securing CT code
(§2.2.2) [25].

This Paper. We present SERBERUS,3 the first com-
prehensive software mitigation for hardening CT code against
Spectre attacks involving any combination of the PHT, BTB,
RSB, STL, and PSF speculation primitives (Tab. 1). SER-
BERUS minimally disables speculation primitives with exist-
ing hardware speculation controls [41], doing so only when a
performance advantage is clear. It is readily deployable on ex-
isting hardware and outperforms state-of-the-art mitigations
on the cryptographic routines we evaluate (§6). SERBERUS is
based on three key insights.

Insight 1: Hardware model. Mitigating Spectre attacks in
software is challenged by (i) the impracticality of reasoning
about unconstrained transient control-flow [42], and (ii) the
overhead of managing unconstrained transient data-flow [43].
Like prior work [36], we observe that lightweight (negligible
overhead) hardware control-flow integrity (CFI) protections,
like Intel CET [44], constrain transient control-flow to the
extent that it may be comprehensively considered by software
analyses. Thus, SERBERUS requires that such CFI protections
are enabled in the target hardware. Moreover, we show for
the first time that while Spectre-STL4 can be efficiently mit-
igated in software, Spectre-PSF must be disabled to retain
performance. Thus, SERBERUS requires the PSFD speculation

3SERBERUS is named after Cerberus, a three-headed dog (representing its
three mitigation passes) of Greek mythology with a serpentine tail (our
hardware model ASP) guarding the gates of Hades to prevent the dead
(transient executions) from escaping (exfiltrating secrets) to the overworld
(via transmitters).

4Spectre-STL denotes Spectre leakage enabled by the STL speculation
primitive.

Serberus: Protecting Cryptographic Code from Spectres at Compile-Time

Abstract—We design and formally prove the completeness
of SERBERUS, the first comprehensive software mitigation for
hardening constant-time (CT) code against Spectre attacks
involving the following speculation primitives: PHT, BTB, RSB,
STL, and/or PSF. SERBERUS is based on three insights. First,
hardware control-flow integrity (CFI) protections restrict tran-
sient control-flow to the extent that it may be comprehensively
considered by software analyses. Second, traditional definitions
of CT code permit two unsafe code patterns that are almost
always capable of leaking secrets during transient execution.
Finally, once these code patterns are addressed, all Spectre
leakage of secrets in CT programs can be attributed to one
of four classes of taint primitives, instructions which can tran-
siently assign a secret value to a publicly-typed variable. We
empirically evaluate SERBERUS on cryptographic primitives in
the OPENSSL, LIBSODIUM, and HACL* libraries. SERBERUS
introduces 20.4% runtime overhead on average, compared to
24.9% for the next closest state-of-the-art software mitigation,
which features weaker security guarantees.

1. Introduction

The constant-time (CT) programming approach [1]–
[15] was designed to support the safe execution of secret-
processing programs, like cryptographic code [16]–[18], in
the face of hardware side-channel attacks. Concretely, CT
programming requires that only safe instructions, which cre-
ate operand-independent hardware resource usage, process
secrets. Unsafe instructions, or transmitters [19], typically
include: control-flow instructions, memory accesses, and
variable-time instructions (e.g., floating-point [20] or integer
division [13] instructions).

Unfortunately, common hardware optimizations enable
transient execution1 to steer secrets towards the operands
of (transient) transmitters, circumventing CT protections. In
Spectre attacks (our focus, §2.2) transient execution results
from control- or data-flow mispredictions at runtime [21]. On
modern processors, there are five well-documented sources
of such (mis)predictions, called speculation primitives [22]:
conditional branch prediction (PHT) [23], indirect branch
prediction (BTB) [23], store-to-load forwarding prediction
(STL) [24], predictive store forwarding (PSF) [25]–[27], and
return address prediction (RSB) [28].2

Hardening CT programs against all Spectre attacks in-
volving any combination of the aforementioned speculation
primitives is difficult. Suitable hardware mitigations have
been proposed [37]–[40], but require complex design changes

1Transient execution refers to the execution of instructions that are never
architecturally committed [21].

2Abbreviations are borrowed from recent work which surveys Spectre
attacks and software defenses [21], [25].

Mitigation Leakage Proof PHT BTB RSB STL PSF
INTEL-LFENCE [29] - - - - - -

LLVM-SLH [30] J · Karch 7 - - - -
RETPOLINE [31] - - - " - -

IPREDD [32] - - - - - -
SSBD [33] - - - - -
PSFD [34] - - - - - -

F+RETP+SSBD - - -
S+RETP+SSBD J · Karch 7 -
BLADE [35] J · Kct 3 - - - -

SWIVEL-CET [36] J · Kmem 7
SERBERUS (ours) J · Kct 3

TABLE 1: SERBERUS versus software mitigations for existing hardware.
Leakage: SERBERUS targets the CT leakage model J · Kct; J · Kmem and
J · Karch are inapplicable to CT code [25]. Speculation primitives: com-
plete mitigation without disabling speculation; disables/blocks spec-
ulation primitive (for implicitly disabled); incomplete mitigation;
" creates opportunities for speculation primitive to introduce transient
execution; - no mitigation. SERBERUS is the only defense for the CT
leakage model to mitigate leakage due to all speculation primitives.

that limit their adoption. Several software mitigations tar-
get existing hardware (Tab. 1). However, the most robust of
these, Swivel-CET [36], is not suitable for securing CT code
(§2.2.2) [25].

This Paper. We present SERBERUS,3 the first com-
prehensive software mitigation for hardening CT code against
Spectre attacks involving any combination of the PHT, BTB,
RSB, STL, and PSF speculation primitives (Tab. 1). SER-
BERUS minimally disables speculation primitives with exist-
ing hardware speculation controls [41], doing so only when a
performance advantage is clear. It is readily deployable on ex-
isting hardware and outperforms state-of-the-art mitigations
on the cryptographic routines we evaluate (§6). SERBERUS is
based on three key insights.

Insight 1: Hardware model. Mitigating Spectre attacks in
software is challenged by (i) the impracticality of reasoning
about unconstrained transient control-flow [42], and (ii) the
overhead of managing unconstrained transient data-flow [43].
Like prior work [36], we observe that lightweight (negligible
overhead) hardware control-flow integrity (CFI) protections,
like Intel CET [44], constrain transient control-flow to the
extent that it may be comprehensively considered by software
analyses. Thus, SERBERUS requires that such CFI protections
are enabled in the target hardware. Moreover, we show for
the first time that while Spectre-STL4 can be efficiently mit-
igated in software, Spectre-PSF must be disabled to retain
performance. Thus, SERBERUS requires the PSFD speculation

3SERBERUS is named after Cerberus, a three-headed dog (representing its
three mitigation passes) of Greek mythology with a serpentine tail (our
hardware model ASP) guarding the gates of Hades to prevent the dead
(transient executions) from escaping (exfiltrating secrets) to the overworld
(via transmitters).

4Spectre-STL denotes Spectre leakage enabled by the STL speculation
primitive.

Serberus: Protecting Cryptographic Code from Spectres at Compile-Time

Abstract—We design and formally prove the completeness
of SERBERUS, the first comprehensive software mitigation for
hardening constant-time (CT) code against Spectre attacks
involving the following speculation primitives: PHT, BTB, RSB,
STL, and/or PSF. SERBERUS is based on three insights. First,
hardware control-flow integrity (CFI) protections restrict tran-
sient control-flow to the extent that it may be comprehensively
considered by software analyses. Second, traditional definitions
of CT code permit two unsafe code patterns that are almost
always capable of leaking secrets during transient execution.
Finally, once these code patterns are addressed, all Spectre
leakage of secrets in CT programs can be attributed to one
of four classes of taint primitives, instructions which can tran-
siently assign a secret value to a publicly-typed variable. We
empirically evaluate SERBERUS on cryptographic primitives in
the OPENSSL, LIBSODIUM, and HACL* libraries. SERBERUS
introduces 20.4% runtime overhead on average, compared to
24.9% for the next closest state-of-the-art software mitigation,
which features weaker security guarantees.

1. Introduction

The constant-time (CT) programming approach [1]–
[15] was designed to support the safe execution of secret-
processing programs, like cryptographic code [16]–[18], in
the face of hardware side-channel attacks. Concretely, CT
programming requires that only safe instructions, which cre-
ate operand-independent hardware resource usage, process
secrets. Unsafe instructions, or transmitters [19], typically
include: control-flow instructions, memory accesses, and
variable-time instructions (e.g., floating-point [20] or integer
division [13] instructions).

Unfortunately, common hardware optimizations enable
transient execution1 to steer secrets towards the operands
of (transient) transmitters, circumventing CT protections. In
Spectre attacks (our focus, §2.2) transient execution results
from control- or data-flow mispredictions at runtime [21]. On
modern processors, there are five well-documented sources
of such (mis)predictions, called speculation primitives [22]:
conditional branch prediction (PHT) [23], indirect branch
prediction (BTB) [23], store-to-load forwarding prediction
(STL) [24], predictive store forwarding (PSF) [25]–[27], and
return address prediction (RSB) [28].2

Hardening CT programs against all Spectre attacks in-
volving any combination of the aforementioned speculation
primitives is difficult. Suitable hardware mitigations have
been proposed [37]–[40], but require complex design changes

1Transient execution refers to the execution of instructions that are never
architecturally committed [21].

2Abbreviations are borrowed from recent work which surveys Spectre
attacks and software defenses [21], [25].

Mitigation Leakage Proof PHT BTB RSB STL PSF
INTEL-LFENCE [29] - - - - - -

LLVM-SLH [30] J · Karch 7 - - - -
RETPOLINE [31] - - - " - -

IPREDD [32] - - - - - -
SSBD [33] - - - - -
PSFD [34] - - - - - -

F+RETP+SSBD - - -
S+RETP+SSBD J · Karch 7 -
BLADE [35] J · Kct 3 - - - -

SWIVEL-CET [36] J · Kmem 7
SERBERUS (ours) J · Kct 3

TABLE 1: SERBERUS versus software mitigations for existing hardware.
Leakage: SERBERUS targets the CT leakage model J · Kct; J · Kmem and
J · Karch are inapplicable to CT code [25]. Speculation primitives: com-
plete mitigation without disabling speculation; disables/blocks spec-
ulation primitive (for implicitly disabled); incomplete mitigation;
" creates opportunities for speculation primitive to introduce transient
execution; - no mitigation. SERBERUS is the only defense for the CT
leakage model to mitigate leakage due to all speculation primitives.

that limit their adoption. Several software mitigations tar-
get existing hardware (Tab. 1). However, the most robust of
these, Swivel-CET [36], is not suitable for securing CT code
(§2.2.2) [25].

This Paper. We present SERBERUS,3 the first com-
prehensive software mitigation for hardening CT code against
Spectre attacks involving any combination of the PHT, BTB,
RSB, STL, and PSF speculation primitives (Tab. 1). SER-
BERUS minimally disables speculation primitives with exist-
ing hardware speculation controls [41], doing so only when a
performance advantage is clear. It is readily deployable on ex-
isting hardware and outperforms state-of-the-art mitigations
on the cryptographic routines we evaluate (§6). SERBERUS is
based on three key insights.

Insight 1: Hardware model. Mitigating Spectre attacks in
software is challenged by (i) the impracticality of reasoning
about unconstrained transient control-flow [42], and (ii) the
overhead of managing unconstrained transient data-flow [43].
Like prior work [36], we observe that lightweight (negligible
overhead) hardware control-flow integrity (CFI) protections,
like Intel CET [44], constrain transient control-flow to the
extent that it may be comprehensively considered by software
analyses. Thus, SERBERUS requires that such CFI protections
are enabled in the target hardware. Moreover, we show for
the first time that while Spectre-STL4 can be efficiently mit-
igated in software, Spectre-PSF must be disabled to retain
performance. Thus, SERBERUS requires the PSFD speculation

3SERBERUS is named after Cerberus, a three-headed dog (representing its
three mitigation passes) of Greek mythology with a serpentine tail (our
hardware model ASP) guarding the gates of Hades to prevent the dead
(transient executions) from escaping (exfiltrating secrets) to the overworld
(via transmitters).

4Spectre-STL denotes Spectre leakage enabled by the STL speculation
primitive.

Mitigating Spectre in Software
Efficiently mitigating all Spectre leakage due to any combination of
{PHT, BTB, RSB, STL, PSF} is hard.

Two approaches:

Serberus: Protecting Cryptographic Code from Spectres at Compile-Time

Abstract—We design and formally prove the completeness
of SERBERUS, the first comprehensive software mitigation for
hardening constant-time (CT) code against Spectre attacks
involving the following speculation primitives: PHT, BTB, RSB,
STL, and/or PSF. SERBERUS is based on three insights. First,
hardware control-flow integrity (CFI) protections restrict tran-
sient control-flow to the extent that it may be comprehensively
considered by software analyses. Second, traditional definitions
of CT code permit two unsafe code patterns that are almost
always capable of leaking secrets during transient execution.
Finally, once these code patterns are addressed, all Spectre
leakage of secrets in CT programs can be attributed to one
of four classes of taint primitives, instructions which can tran-
siently assign a secret value to a publicly-typed variable. We
empirically evaluate SERBERUS on cryptographic primitives in
the OPENSSL, LIBSODIUM, and HACL* libraries. SERBERUS
introduces 20.4% runtime overhead on average, compared to
24.9% for the next closest state-of-the-art software mitigation,
which features weaker security guarantees.

1. Introduction

The constant-time (CT) programming approach [1]–
[15] was designed to support the safe execution of secret-
processing programs, like cryptographic code [16]–[18], in
the face of hardware side-channel attacks. Concretely, CT
programming requires that only safe instructions, which cre-
ate operand-independent hardware resource usage, process
secrets. Unsafe instructions, or transmitters [19], typically
include: control-flow instructions, memory accesses, and
variable-time instructions (e.g., floating-point [20] or integer
division [13] instructions).

Unfortunately, common hardware optimizations enable
transient execution1 to steer secrets towards the operands
of (transient) transmitters, circumventing CT protections. In
Spectre attacks (our focus, §2.2) transient execution results
from control- or data-flow mispredictions at runtime [21]. On
modern processors, there are five well-documented sources
of such (mis)predictions, called speculation primitives [22]:
conditional branch prediction (PHT) [23], indirect branch
prediction (BTB) [23], store-to-load forwarding prediction
(STL) [24], predictive store forwarding (PSF) [25]–[27], and
return address prediction (RSB) [28].2

Hardening CT programs against all Spectre attacks in-
volving any combination of the aforementioned speculation
primitives is difficult. Suitable hardware mitigations have
been proposed [37]–[40], but require complex design changes

1Transient execution refers to the execution of instructions that are never
architecturally committed [21].

2Abbreviations are borrowed from recent work which surveys Spectre
attacks and software defenses [21], [25].

Mitigation Leakage Proof PHT BTB RSB STL PSF
INTEL-LFENCE [29] - - - - - -

LLVM-SLH [30] J · Karch 7 - - - -
RETPOLINE [31] - - - " - -

IPREDD [32] - - - - - -
SSBD [33] - - - - -
PSFD [34] - - - - - -

F+RETP+SSBD - - -
S+RETP+SSBD J · Karch 7 -
BLADE [35] J · Kct 3 - - - -

SWIVEL-CET [36] J · Kmem 7
SERBERUS (ours) J · Kct 3

TABLE 1: SERBERUS versus software mitigations for existing hardware.
Leakage: SERBERUS targets the CT leakage model J · Kct; J · Kmem and
J · Karch are inapplicable to CT code [25]. Speculation primitives: com-
plete mitigation without disabling speculation; disables/blocks spec-
ulation primitive (for implicitly disabled); incomplete mitigation;
" creates opportunities for speculation primitive to introduce transient
execution; - no mitigation. SERBERUS is the only defense for the CT
leakage model to mitigate leakage due to all speculation primitives.

that limit their adoption. Several software mitigations tar-
get existing hardware (Tab. 1). However, the most robust of
these, Swivel-CET [36], is not suitable for securing CT code
(§2.2.2) [25].

This Paper. We present SERBERUS,3 the first com-
prehensive software mitigation for hardening CT code against
Spectre attacks involving any combination of the PHT, BTB,
RSB, STL, and PSF speculation primitives (Tab. 1). SER-
BERUS minimally disables speculation primitives with exist-
ing hardware speculation controls [41], doing so only when a
performance advantage is clear. It is readily deployable on ex-
isting hardware and outperforms state-of-the-art mitigations
on the cryptographic routines we evaluate (§6). SERBERUS is
based on three key insights.

Insight 1: Hardware model. Mitigating Spectre attacks in
software is challenged by (i) the impracticality of reasoning
about unconstrained transient control-flow [42], and (ii) the
overhead of managing unconstrained transient data-flow [43].
Like prior work [36], we observe that lightweight (negligible
overhead) hardware control-flow integrity (CFI) protections,
like Intel CET [44], constrain transient control-flow to the
extent that it may be comprehensively considered by software
analyses. Thus, SERBERUS requires that such CFI protections
are enabled in the target hardware. Moreover, we show for
the first time that while Spectre-STL4 can be efficiently mit-
igated in software, Spectre-PSF must be disabled to retain
performance. Thus, SERBERUS requires the PSFD speculation

3SERBERUS is named after Cerberus, a three-headed dog (representing its
three mitigation passes) of Greek mythology with a serpentine tail (our
hardware model ASP) guarding the gates of Hades to prevent the dead
(transient executions) from escaping (exfiltrating secrets) to the overworld
(via transmitters).

4Spectre-STL denotes Spectre leakage enabled by the STL speculation
primitive.

Disable speculation primitive

Serberus: Protecting Cryptographic Code from Spectres at Compile-Time

Abstract—We design and formally prove the completeness
of SERBERUS, the first comprehensive software mitigation for
hardening constant-time (CT) code against Spectre attacks
involving the following speculation primitives: PHT, BTB, RSB,
STL, and/or PSF. SERBERUS is based on three insights. First,
hardware control-flow integrity (CFI) protections restrict tran-
sient control-flow to the extent that it may be comprehensively
considered by software analyses. Second, traditional definitions
of CT code permit two unsafe code patterns that are almost
always capable of leaking secrets during transient execution.
Finally, once these code patterns are addressed, all Spectre
leakage of secrets in CT programs can be attributed to one
of four classes of taint primitives, instructions which can tran-
siently assign a secret value to a publicly-typed variable. We
empirically evaluate SERBERUS on cryptographic primitives in
the OPENSSL, LIBSODIUM, and HACL* libraries. SERBERUS
introduces 20.4% runtime overhead on average, compared to
24.9% for the next closest state-of-the-art software mitigation,
which features weaker security guarantees.

1. Introduction

The constant-time (CT) programming approach [1]–
[15] was designed to support the safe execution of secret-
processing programs, like cryptographic code [16]–[18], in
the face of hardware side-channel attacks. Concretely, CT
programming requires that only safe instructions, which cre-
ate operand-independent hardware resource usage, process
secrets. Unsafe instructions, or transmitters [19], typically
include: control-flow instructions, memory accesses, and
variable-time instructions (e.g., floating-point [20] or integer
division [13] instructions).

Unfortunately, common hardware optimizations enable
transient execution1 to steer secrets towards the operands
of (transient) transmitters, circumventing CT protections. In
Spectre attacks (our focus, §2.2) transient execution results
from control- or data-flow mispredictions at runtime [21]. On
modern processors, there are five well-documented sources
of such (mis)predictions, called speculation primitives [22]:
conditional branch prediction (PHT) [23], indirect branch
prediction (BTB) [23], store-to-load forwarding prediction
(STL) [24], predictive store forwarding (PSF) [25]–[27], and
return address prediction (RSB) [28].2

Hardening CT programs against all Spectre attacks in-
volving any combination of the aforementioned speculation
primitives is difficult. Suitable hardware mitigations have
been proposed [37]–[40], but require complex design changes

1Transient execution refers to the execution of instructions that are never
architecturally committed [21].

2Abbreviations are borrowed from recent work which surveys Spectre
attacks and software defenses [21], [25].

Mitigation Leakage Proof PHT BTB RSB STL PSF
INTEL-LFENCE [29] - - - - - -

LLVM-SLH [30] J · Karch 7 - - - -
RETPOLINE [31] - - - " - -

IPREDD [32] - - - - - -
SSBD [33] - - - - -
PSFD [34] - - - - - -

F+RETP+SSBD - - -
S+RETP+SSBD J · Karch 7 -
BLADE [35] J · Kct 3 - - - -

SWIVEL-CET [36] J · Kmem 7
SERBERUS (ours) J · Kct 3

TABLE 1: SERBERUS versus software mitigations for existing hardware.
Leakage: SERBERUS targets the CT leakage model J · Kct; J · Kmem and
J · Karch are inapplicable to CT code [25]. Speculation primitives: com-
plete mitigation without disabling speculation; disables/blocks spec-
ulation primitive (for implicitly disabled); incomplete mitigation;
" creates opportunities for speculation primitive to introduce transient
execution; - no mitigation. SERBERUS is the only defense for the CT
leakage model to mitigate leakage due to all speculation primitives.

that limit their adoption. Several software mitigations tar-
get existing hardware (Tab. 1). However, the most robust of
these, Swivel-CET [36], is not suitable for securing CT code
(§2.2.2) [25].

This Paper. We present SERBERUS,3 the first com-
prehensive software mitigation for hardening CT code against
Spectre attacks involving any combination of the PHT, BTB,
RSB, STL, and PSF speculation primitives (Tab. 1). SER-
BERUS minimally disables speculation primitives with exist-
ing hardware speculation controls [41], doing so only when a
performance advantage is clear. It is readily deployable on ex-
isting hardware and outperforms state-of-the-art mitigations
on the cryptographic routines we evaluate (§6). SERBERUS is
based on three key insights.

Insight 1: Hardware model. Mitigating Spectre attacks in
software is challenged by (i) the impracticality of reasoning
about unconstrained transient control-flow [42], and (ii) the
overhead of managing unconstrained transient data-flow [43].
Like prior work [36], we observe that lightweight (negligible
overhead) hardware control-flow integrity (CFI) protections,
like Intel CET [44], constrain transient control-flow to the
extent that it may be comprehensively considered by software
analyses. Thus, SERBERUS requires that such CFI protections
are enabled in the target hardware. Moreover, we show for
the first time that while Spectre-STL4 can be efficiently mit-
igated in software, Spectre-PSF must be disabled to retain
performance. Thus, SERBERUS requires the PSFD speculation

3SERBERUS is named after Cerberus, a three-headed dog (representing its
three mitigation passes) of Greek mythology with a serpentine tail (our
hardware model ASP) guarding the gates of Hades to prevent the dead
(transient executions) from escaping (exfiltrating secrets) to the overworld
(via transmitters).

4Spectre-STL denotes Spectre leakage enabled by the STL speculation
primitive.

Prevent secret-dependent transmitters

39

SERBERUS Insights

1. Hardware model: CFI protections enable comprehensive analysis
of transient control-flow

2. Software requirements: static constant-time (CTS) overcomes
unsafe code patterns permitted by CT programming

3. Leakage characterization: Spectre leakage is due to four classes
of taint primitives, which assign secrets to publicly-typed variables

40

SERBERUS’ Hardware Model

Easy to analyze!

41

SERBERUS constrains transient control-flow
with CFI protections from Intel CET:
• Indirect branch tracking (forward-edge)
• Shadow stack (backward-edge)

CFI protections
CALL

RET

RET

foo:

bar:

CALL

RET

RET

foo:

bar:

Constraining transient control-flow Constraining transient data-flow

PSF

Serberus: Protecting Cryptographic Code from Spectres at Compile-Time

Abstract—We design and formally prove the completeness
of SERBERUS, the first comprehensive software mitigation for
hardening constant-time (CT) code against Spectre attacks
involving the following speculation primitives: PHT, BTB, RSB,
STL, and/or PSF. SERBERUS is based on three insights. First,
hardware control-flow integrity (CFI) protections restrict tran-
sient control-flow to the extent that it may be comprehensively
considered by software analyses. Second, traditional definitions
of CT code permit two unsafe code patterns that are almost
always capable of leaking secrets during transient execution.
Finally, once these code patterns are addressed, all Spectre
leakage of secrets in CT programs can be attributed to one
of four classes of taint primitives, instructions which can tran-
siently assign a secret value to a publicly-typed variable. We
empirically evaluate SERBERUS on cryptographic primitives in
the OPENSSL, LIBSODIUM, and HACL* libraries. SERBERUS
introduces 20.4% runtime overhead on average, compared to
24.9% for the next closest state-of-the-art software mitigation,
which features weaker security guarantees.

1. Introduction

The constant-time (CT) programming approach [1]–
[15] was designed to support the safe execution of secret-
processing programs, like cryptographic code [16]–[18], in
the face of hardware side-channel attacks. Concretely, CT
programming requires that only safe instructions, which cre-
ate operand-independent hardware resource usage, process
secrets. Unsafe instructions, or transmitters [19], typically
include: control-flow instructions, memory accesses, and
variable-time instructions (e.g., floating-point [20] or integer
division [13] instructions).

Unfortunately, common hardware optimizations enable
transient execution1 to steer secrets towards the operands
of (transient) transmitters, circumventing CT protections. In
Spectre attacks (our focus, §2.2) transient execution results
from control- or data-flow mispredictions at runtime [21]. On
modern processors, there are five well-documented sources
of such (mis)predictions, called speculation primitives [22]:
conditional branch prediction (PHT) [23], indirect branch
prediction (BTB) [23], store-to-load forwarding prediction
(STL) [24], predictive store forwarding (PSF) [25]–[27], and
return address prediction (RSB) [28].2

Hardening CT programs against all Spectre attacks in-
volving any combination of the aforementioned speculation
primitives is difficult. Suitable hardware mitigations have
been proposed [37]–[40], but require complex design changes

1Transient execution refers to the execution of instructions that are never
architecturally committed [21].

2Abbreviations are borrowed from recent work which surveys Spectre
attacks and software defenses [21], [25].

Mitigation Leakage Proof PHT BTB RSB STL PSF
INTEL-LFENCE [29] - - - - - -

LLVM-SLH [30] J · Karch 7 - - - -
RETPOLINE [31] - - - " - -

IPREDD [32] - - - - - -
SSBD [33] - - - - -
PSFD [34] - - - - - -

F+RETP+SSBD - - -
S+RETP+SSBD J · Karch 7 -
BLADE [35] J · Kct 3 - - - -

SWIVEL-CET [36] J · Kmem 7
SERBERUS (ours) J · Kct 3

TABLE 1: SERBERUS versus software mitigations for existing hardware.
Leakage: SERBERUS targets the CT leakage model J · Kct; J · Kmem and
J · Karch are inapplicable to CT code [25]. Speculation primitives: com-
plete mitigation without disabling speculation; disables/blocks spec-
ulation primitive (for implicitly disabled); incomplete mitigation;
" creates opportunities for speculation primitive to introduce transient
execution; - no mitigation. SERBERUS is the only defense for the CT
leakage model to mitigate leakage due to all speculation primitives.

that limit their adoption. Several software mitigations tar-
get existing hardware (Tab. 1). However, the most robust of
these, Swivel-CET [36], is not suitable for securing CT code
(§2.2.2) [25].

This Paper. We present SERBERUS,3 the first com-
prehensive software mitigation for hardening CT code against
Spectre attacks involving any combination of the PHT, BTB,
RSB, STL, and PSF speculation primitives (Tab. 1). SER-
BERUS minimally disables speculation primitives with exist-
ing hardware speculation controls [41], doing so only when a
performance advantage is clear. It is readily deployable on ex-
isting hardware and outperforms state-of-the-art mitigations
on the cryptographic routines we evaluate (§6). SERBERUS is
based on three key insights.

Insight 1: Hardware model. Mitigating Spectre attacks in
software is challenged by (i) the impracticality of reasoning
about unconstrained transient control-flow [42], and (ii) the
overhead of managing unconstrained transient data-flow [43].
Like prior work [36], we observe that lightweight (negligible
overhead) hardware control-flow integrity (CFI) protections,
like Intel CET [44], constrain transient control-flow to the
extent that it may be comprehensively considered by software
analyses. Thus, SERBERUS requires that such CFI protections
are enabled in the target hardware. Moreover, we show for
the first time that while Spectre-STL4 can be efficiently mit-
igated in software, Spectre-PSF must be disabled to retain
performance. Thus, SERBERUS requires the PSFD speculation

3SERBERUS is named after Cerberus, a three-headed dog (representing its
three mitigation passes) of Greek mythology with a serpentine tail (our
hardware model ASP) guarding the gates of Hades to prevent the dead
(transient executions) from escaping (exfiltrating secrets) to the overworld
(via transmitters).

4Spectre-STL denotes Spectre leakage enabled by the STL speculation
primitive.

SERBERUS disables PSF, since it is
intractable to efficiently mitigate in
software.

Unconstrained transient
control-flow

Intractable to analyze…

Limitations of CT programming

Is CT at least a good starting place for Spectre mitigations? No.

Two unsafe CT code patterns almost always leak secrets transiently
and inhibit efficient mitigations:

42

SERBERUS’ Software Requirements: CT Limitations

Latent CT violations1
if (0)
x = A[secret];

Spectre-unaware calling convention2 process(secret);

Limitations of CT programming

Underlying issue: passing/returning secrets
by value is inherently dangerous

43

Constant-Time Limitation 2

process(secret);

int process(int secret) {
return secret + 1;

}

int leak(int idx) {
return A[idx];

}

Spectre-unaware calling convention2

We propose static constant-time (CTS),
which extends CT to prohibit these unsafe code patterns and Solution: 1 2

Taint Primitives in CTS Programs
• Taint primitive: instruction that assigned a secret

value to a publicly-typed variable when executed
• Spectre leakage in CTS programs occurs when a

taint primitive passes its result to a transmitter
• Four classes of taint primitives in CTS programs
• Suggests novel Spectre mitigation approach:

Eliminate taint primitive
Prevent taint-primitive-dependent transmitters

44

x = *p;
y = A[x];

NCAL
non-constant-address load

x = 0;
*p = secret;
y = A[x];

NCAS
non-constant-address store

STKL
uninitialized stack load

int x = 0;
y = A[x];

SARG
unexpectedly secret argument

foo(int x):
y = A[x];

⌫

SERBERUS Overview

• SERBERUS eliminates all secret leakage in CTS programs due to any
combination of {PHT, BTB, RSB, STL} speculation primitives.
• Consists of three intraprocedural passes

45

vulnerable
CTS program

Fence
Insertion

NCASNCAL
NCAS
STKL
SARG

NCAL

Function-
Private
Stacks

STKL

NCAL

Register
Cleaning

SARG

NCAL

secure
CTS program

SERBERUS

⌫ ⌫ ⌫ NCAL
NCAS
STKL
SARG

⌫
⌫
⌫

SERBERUS’ Fence Insertion Pass
• Frames speculation fence (LFENCE) insertion as a min-cut problem over

the transient control-flow graph
• Sources are candidate NCAL or NCAS taint primitives
• Sinks are dependent transmitters and instructions that may facilitate

dependent transmitters

46

foo:

a

b

a

b

src a

sink a
src b

sink b

Procedure
Transient CFG

LFENCE

LFENCE

src a

sink a
src b

sink b

SERBERUS’ Function-Private Stacks Pass
Stack sharing is the root cause of STKL: a publicly-typed
load may read a stale secret from prior procedure’s stack frame.

47

foo() {
x = secret;
...

}

SP

x

SP

STKL
uninitialized stack load

int x = 0;
y = A[x];

Serberus: Protecting Cryptographic Code from Spectres at Compile-Time

Abstract—We design and formally prove the completeness
of SERBERUS, the first comprehensive software mitigation for
hardening constant-time (CT) code against Spectre attacks
involving the following speculation primitives: PHT, BTB, RSB,
STL, and/or PSF. SERBERUS is based on three insights. First,
hardware control-flow integrity (CFI) protections restrict tran-
sient control-flow to the extent that it may be comprehensively
considered by software analyses. Second, traditional definitions
of CT code permit two unsafe code patterns that are almost
always capable of leaking secrets during transient execution.
Finally, once these code patterns are addressed, all Spectre
leakage of secrets in CT programs can be attributed to one
of four classes of taint primitives, instructions which can tran-
siently assign a secret value to a publicly-typed variable. We
empirically evaluate SERBERUS on cryptographic primitives in
the OPENSSL, LIBSODIUM, and HACL* libraries. SERBERUS
introduces 20.4% runtime overhead on average, compared to
24.9% for the next closest state-of-the-art software mitigation,
which features weaker security guarantees.

1. Introduction

The constant-time (CT) programming approach [1]–
[15] was designed to support the safe execution of secret-
processing programs, like cryptographic code [16]–[18], in
the face of hardware side-channel attacks. Concretely, CT
programming requires that only safe instructions, which cre-
ate operand-independent hardware resource usage, process
secrets. Unsafe instructions, or transmitters [19], typically
include: control-flow instructions, memory accesses, and
variable-time instructions (e.g., floating-point [20] or integer
division [13] instructions).

Unfortunately, common hardware optimizations enable
transient execution1 to steer secrets towards the operands
of (transient) transmitters, circumventing CT protections. In
Spectre attacks (our focus, §2.2) transient execution results
from control- or data-flow mispredictions at runtime [21]. On
modern processors, there are five well-documented sources
of such (mis)predictions, called speculation primitives [22]:
conditional branch prediction (PHT) [23], indirect branch
prediction (BTB) [23], store-to-load forwarding prediction
(STL) [24], predictive store forwarding (PSF) [25]–[27], and
return address prediction (RSB) [28].2

Hardening CT programs against all Spectre attacks in-
volving any combination of the aforementioned speculation
primitives is difficult. Suitable hardware mitigations have
been proposed [37]–[40], but require complex design changes

1Transient execution refers to the execution of instructions that are never
architecturally committed [21].

2Abbreviations are borrowed from recent work which surveys Spectre
attacks and software defenses [21], [25].

Mitigation Leakage Proof PHT BTB RSB STL PSF
INTEL-LFENCE [29] - - - - - -

LLVM-SLH [30] J · Karch 7 - - - -
RETPOLINE [31] - - - " - -

IPREDD [32] - - - - - -
SSBD [33] - - - - -
PSFD [34] - - - - - -

F+RETP+SSBD - - -
S+RETP+SSBD J · Karch 7 -
BLADE [35] J · Kct 3 - - - -

SWIVEL-CET [36] J · Kmem 7
SERBERUS (ours) J · Kct 3

TABLE 1: SERBERUS versus software mitigations for existing hardware.
Leakage: SERBERUS targets the CT leakage model J · Kct; J · Kmem and
J · Karch are inapplicable to CT code [25]. Speculation primitives: com-
plete mitigation without disabling speculation; disables/blocks spec-
ulation primitive (for implicitly disabled); incomplete mitigation;
" creates opportunities for speculation primitive to introduce transient
execution; - no mitigation. SERBERUS is the only defense for the CT
leakage model to mitigate leakage due to all speculation primitives.

that limit their adoption. Several software mitigations tar-
get existing hardware (Tab. 1). However, the most robust of
these, Swivel-CET [36], is not suitable for securing CT code
(§2.2.2) [25].

This Paper. We present SERBERUS,3 the first com-
prehensive software mitigation for hardening CT code against
Spectre attacks involving any combination of the PHT, BTB,
RSB, STL, and PSF speculation primitives (Tab. 1). SER-
BERUS minimally disables speculation primitives with exist-
ing hardware speculation controls [41], doing so only when a
performance advantage is clear. It is readily deployable on ex-
isting hardware and outperforms state-of-the-art mitigations
on the cryptographic routines we evaluate (§6). SERBERUS is
based on three key insights.

Insight 1: Hardware model. Mitigating Spectre attacks in
software is challenged by (i) the impracticality of reasoning
about unconstrained transient control-flow [42], and (ii) the
overhead of managing unconstrained transient data-flow [43].
Like prior work [36], we observe that lightweight (negligible
overhead) hardware control-flow integrity (CFI) protections,
like Intel CET [44], constrain transient control-flow to the
extent that it may be comprehensively considered by software
analyses. Thus, SERBERUS requires that such CFI protections
are enabled in the target hardware. Moreover, we show for
the first time that while Spectre-STL4 can be efficiently mit-
igated in software, Spectre-PSF must be disabled to retain
performance. Thus, SERBERUS requires the PSFD speculation

3SERBERUS is named after Cerberus, a three-headed dog (representing its
three mitigation passes) of Greek mythology with a serpentine tail (our
hardware model ASP) guarding the gates of Hades to prevent the dead
(transient executions) from escaping (exfiltrating secrets) to the overworld
(via transmitters).

4Spectre-STL denotes Spectre leakage enabled by the STL speculation
primitive.

SERBERUS’ Function-Private Stacks Pass

48

SP

bar() {
y = 0;
z = A[y];

}

y

x

As with RSB, ASP models STL in an implementation-
agnostic manner. It captures a superset of the STL behaviors
captured by prior execution models (§3.3.1).

NCA/CA accesses. We partition memory accesses into
two classes which differ in their ability to introduce secrets
into transient computation, as we show in §4–5.

Definition 3.1. A memory access I 7! LD/ST [ra + d], r is
constant-address (CA) if ra 2 {ZR, SP}; otherwise, I is non-
constant-address (NCA). Furthermore, if ra = ZR, I is a CA
global access, and displacement d is the fixed address of a
global variable. If ra = SP, I is a CA stack access, and d

gives the frame offset of a stack variable.

3.4.5. Speculation Fence. ASP features a speculation fence
instruction, LFENCE, which halts transient execution but
allows sequential execution to proceed. Its semantics depend
on whether the current configuration is sequential (T = SEQ)
or transient (T = T). If it is sequential, LFENCE drains all
stores in the speculative store set S to data memory, thereby
restricting the set of stores that loads may transiently forward
data from (§3.4.4). If it is transient, execution halts.

SPECULATION FENCE I 7! LFENCE Rseq = R[PC++]

S =
��
A1, (v1)l1

�
, . . . , (An, (vn)ln)

�

Dseq = D[A1 (v1)l1 ; · · · ;An (vn)ln]

Cseq = C[R Rseq; D Dseq; S ()]

�seq(C,P) =

(
(C, ") if T = T

(C0
seq, ") otherwise

�t(C,P) = ;

3.4.6. Other Instructions. JMP sequentially jumps to PC+
d+1. OPo represents a class of arithmetic operations (e.g.,
MOV, ADD), parameterized by function o : V

n
! V . ~rs is a

list of input registers; r is the output register. Its sequential
transition assigns r oL(R(rs,1), . . . , R(rs,n)). Neither JMP
nor OP have transient transitions. We omit transition rules for
brevity (§A.5).

4. Characterizing Transient Leakage in Static
Constant-Time Programs

4.1. Speculative Constant-Time

We formalize Spectre leakage of secrets in CT programs
as a violation of the speculative constant-time (SCT) security
property from prior work [35], [42], [43]. A program satisfies
SCT on ASP if there does not exist a trace that exposes secret-
dependent observations. An SCT violation is a trace that ex-
poses some secretly-labeled observation o. Cauligi et al. [43]
show that all Spectre attacks manifest as SCT violations.

Definition 4.1. A program P is SCT iff for all traces e =
C0 !

O0 · · · !
On Cn+1, no observation o 2 Oi is labeled

secret for any 0  i  n.

4.2. Limitations of Traditional CT

Definition 4.2 (Constant-time). A program P is constant-
time (CT) if for all sequential traces e = C0!

O0
seq · · ·!

On
seq

1 foo: ENDCALL

2 + LD [ZR+PSPF],SP // load private SP
3 SUB SP,SP,k // frame allocation
4 + LD [SP+0],ZR // probe for overflow
5 + ST [ZR+PSPF],SP // store private SP
6 ...

7 CALL r1

8 + LD [ZR+PSPF],SP // load private SP
9 ...

10 + LD [SP+0],ZR // probe for underflow
11 ADD SP,SP,k // frame deallocation
12 + ST [ZR+PSPF],SP // store private SP
13 RET

Figure 2: Instructions inserted by SERBERUS’s FPS Pass (indicated with
“+”). Lines 2–5 are the prologue; lines 10–12 are the epilogue. W

Cn+1 of P , no observation o 2 Oi is labeled secret for any
0  i  n.

We observe that two limitations of Def. 4.2 prevent effi-
cient mitigation of SCT violations in CT programs.

First, a CT program may contain latent CT violations,
such as “if (0) x = A[secret],” that do not manifest
in any sequential trace of the program. Such patterns exhibit
compile-time security-type violations by assigning a secret
value (e.g., secret) to a public variable or supplying it to
a public operand (e.g., the index operand in A[secret]).
Existing CT compilers [14], [74] detect such security-type
violations during compile-time typechecking. We introduce
a security-typeability requirement (§4.3.2) for CTS programs
which formalizes the security-type guarantees of a CT pro-
gram that has passed such typechecks.

Second, CT programs use a Spectre-unaware calling con-
vention that permits passing secrets by value during calls and
returns. This is inherently unsafe in the presence of BTB
or RSB mispredictions which can easily leak secret argu-
ments: the call (resp. return) need only transiently jump to
a procedure (resp. callsite) that expects a public argument in
a register which it subsequently leaks by supplying it to a
transmitter. Secret argument leakage is difficult to mitigate
efficiently: it forces a mitigation to conservatively assume all
arguments and return values may be transiently secret. No
combination of currently deployed mitigations for our threat
model can fully protect against this kind of leakage.9

4.3. Static Constant-Time Programming

Definition 4.3. A program P is static constant-time (CTS) iff
it satisfies CT (Def. 4.2) as well as WF (well-formed, §4.3.1)
and TYP (security-typeable, §4.3.2).

We propose static constant-time (CTS) programming, a
strengthening of CT programming which overcomes the lim-
itations in §4.2. We find that existing CT programs generally
satisfy CTS when compiled with a carefully selected set of
compiler flags (§A.8). Using these flags, all of the crypto-
graphic primitives we benchmark in §6 satisfy CTS without

9Even if LFENCE/SLH, RETPOLINE, and SSBD are simultaneously enabled,
return values may still leak via RSB speculation.

7

prologue

callsite

epilogue

Solution: allocate a private stack to each procedure.

Stack sharing is the root cause of STKL: a publicly-typed
load may read a stale secret from prior procedure’s stack frame.

STKL
uninitialized stack load

int x = 0;
y = A[x];

Serberus: Protecting Cryptographic Code from Spectres at Compile-Time

Abstract—We design and formally prove the completeness
of SERBERUS, the first comprehensive software mitigation for
hardening constant-time (CT) code against Spectre attacks
involving the following speculation primitives: PHT, BTB, RSB,
STL, and/or PSF. SERBERUS is based on three insights. First,
hardware control-flow integrity (CFI) protections restrict tran-
sient control-flow to the extent that it may be comprehensively
considered by software analyses. Second, traditional definitions
of CT code permit two unsafe code patterns that are almost
always capable of leaking secrets during transient execution.
Finally, once these code patterns are addressed, all Spectre
leakage of secrets in CT programs can be attributed to one
of four classes of taint primitives, instructions which can tran-
siently assign a secret value to a publicly-typed variable. We
empirically evaluate SERBERUS on cryptographic primitives in
the OPENSSL, LIBSODIUM, and HACL* libraries. SERBERUS
introduces 20.4% runtime overhead on average, compared to
24.9% for the next closest state-of-the-art software mitigation,
which features weaker security guarantees.

1. Introduction

The constant-time (CT) programming approach [1]–
[15] was designed to support the safe execution of secret-
processing programs, like cryptographic code [16]–[18], in
the face of hardware side-channel attacks. Concretely, CT
programming requires that only safe instructions, which cre-
ate operand-independent hardware resource usage, process
secrets. Unsafe instructions, or transmitters [19], typically
include: control-flow instructions, memory accesses, and
variable-time instructions (e.g., floating-point [20] or integer
division [13] instructions).

Unfortunately, common hardware optimizations enable
transient execution1 to steer secrets towards the operands
of (transient) transmitters, circumventing CT protections. In
Spectre attacks (our focus, §2.2) transient execution results
from control- or data-flow mispredictions at runtime [21]. On
modern processors, there are five well-documented sources
of such (mis)predictions, called speculation primitives [22]:
conditional branch prediction (PHT) [23], indirect branch
prediction (BTB) [23], store-to-load forwarding prediction
(STL) [24], predictive store forwarding (PSF) [25]–[27], and
return address prediction (RSB) [28].2

Hardening CT programs against all Spectre attacks in-
volving any combination of the aforementioned speculation
primitives is difficult. Suitable hardware mitigations have
been proposed [37]–[40], but require complex design changes

1Transient execution refers to the execution of instructions that are never
architecturally committed [21].

2Abbreviations are borrowed from recent work which surveys Spectre
attacks and software defenses [21], [25].

Mitigation Leakage Proof PHT BTB RSB STL PSF
INTEL-LFENCE [29] - - - - - -

LLVM-SLH [30] J · Karch 7 - - - -
RETPOLINE [31] - - - " - -

IPREDD [32] - - - - - -
SSBD [33] - - - - -
PSFD [34] - - - - - -

F+RETP+SSBD - - -
S+RETP+SSBD J · Karch 7 -
BLADE [35] J · Kct 3 - - - -

SWIVEL-CET [36] J · Kmem 7
SERBERUS (ours) J · Kct 3

TABLE 1: SERBERUS versus software mitigations for existing hardware.
Leakage: SERBERUS targets the CT leakage model J · Kct; J · Kmem and
J · Karch are inapplicable to CT code [25]. Speculation primitives: com-
plete mitigation without disabling speculation; disables/blocks spec-
ulation primitive (for implicitly disabled); incomplete mitigation;
" creates opportunities for speculation primitive to introduce transient
execution; - no mitigation. SERBERUS is the only defense for the CT
leakage model to mitigate leakage due to all speculation primitives.

that limit their adoption. Several software mitigations tar-
get existing hardware (Tab. 1). However, the most robust of
these, Swivel-CET [36], is not suitable for securing CT code
(§2.2.2) [25].

This Paper. We present SERBERUS,3 the first com-
prehensive software mitigation for hardening CT code against
Spectre attacks involving any combination of the PHT, BTB,
RSB, STL, and PSF speculation primitives (Tab. 1). SER-
BERUS minimally disables speculation primitives with exist-
ing hardware speculation controls [41], doing so only when a
performance advantage is clear. It is readily deployable on ex-
isting hardware and outperforms state-of-the-art mitigations
on the cryptographic routines we evaluate (§6). SERBERUS is
based on three key insights.

Insight 1: Hardware model. Mitigating Spectre attacks in
software is challenged by (i) the impracticality of reasoning
about unconstrained transient control-flow [42], and (ii) the
overhead of managing unconstrained transient data-flow [43].
Like prior work [36], we observe that lightweight (negligible
overhead) hardware control-flow integrity (CFI) protections,
like Intel CET [44], constrain transient control-flow to the
extent that it may be comprehensively considered by software
analyses. Thus, SERBERUS requires that such CFI protections
are enabled in the target hardware. Moreover, we show for
the first time that while Spectre-STL4 can be efficiently mit-
igated in software, Spectre-PSF must be disabled to retain
performance. Thus, SERBERUS requires the PSFD speculation

3SERBERUS is named after Cerberus, a three-headed dog (representing its
three mitigation passes) of Greek mythology with a serpentine tail (our
hardware model ASP) guarding the gates of Hades to prevent the dead
(transient executions) from escaping (exfiltrating secrets) to the overworld
(via transmitters).

4Spectre-STL denotes Spectre leakage enabled by the STL speculation
primitive.

SERBERUS’ Register Cleaning Pass

Zero out non-argument
registers before every
call/return

foo:
...
MOV r2, 0
MOV r3, 0
CALL r1
...
MOV r1, 0
MOV r2, 0
MOV r3, 0
RET

49

SARG
unexpectedly secret argument

foo(int x):
y = A[x];

Serberus: Protecting Cryptographic Code from Spectres at Compile-Time

Abstract—We design and formally prove the completeness
of SERBERUS, the first comprehensive software mitigation for
hardening constant-time (CT) code against Spectre attacks
involving the following speculation primitives: PHT, BTB, RSB,
STL, and/or PSF. SERBERUS is based on three insights. First,
hardware control-flow integrity (CFI) protections restrict tran-
sient control-flow to the extent that it may be comprehensively
considered by software analyses. Second, traditional definitions
of CT code permit two unsafe code patterns that are almost
always capable of leaking secrets during transient execution.
Finally, once these code patterns are addressed, all Spectre
leakage of secrets in CT programs can be attributed to one
of four classes of taint primitives, instructions which can tran-
siently assign a secret value to a publicly-typed variable. We
empirically evaluate SERBERUS on cryptographic primitives in
the OPENSSL, LIBSODIUM, and HACL* libraries. SERBERUS
introduces 20.4% runtime overhead on average, compared to
24.9% for the next closest state-of-the-art software mitigation,
which features weaker security guarantees.

1. Introduction

The constant-time (CT) programming approach [1]–
[15] was designed to support the safe execution of secret-
processing programs, like cryptographic code [16]–[18], in
the face of hardware side-channel attacks. Concretely, CT
programming requires that only safe instructions, which cre-
ate operand-independent hardware resource usage, process
secrets. Unsafe instructions, or transmitters [19], typically
include: control-flow instructions, memory accesses, and
variable-time instructions (e.g., floating-point [20] or integer
division [13] instructions).

Unfortunately, common hardware optimizations enable
transient execution1 to steer secrets towards the operands
of (transient) transmitters, circumventing CT protections. In
Spectre attacks (our focus, §2.2) transient execution results
from control- or data-flow mispredictions at runtime [21]. On
modern processors, there are five well-documented sources
of such (mis)predictions, called speculation primitives [22]:
conditional branch prediction (PHT) [23], indirect branch
prediction (BTB) [23], store-to-load forwarding prediction
(STL) [24], predictive store forwarding (PSF) [25]–[27], and
return address prediction (RSB) [28].2

Hardening CT programs against all Spectre attacks in-
volving any combination of the aforementioned speculation
primitives is difficult. Suitable hardware mitigations have
been proposed [37]–[40], but require complex design changes

1Transient execution refers to the execution of instructions that are never
architecturally committed [21].

2Abbreviations are borrowed from recent work which surveys Spectre
attacks and software defenses [21], [25].

Mitigation Leakage Proof PHT BTB RSB STL PSF
INTEL-LFENCE [29] - - - - - -

LLVM-SLH [30] J · Karch 7 - - - -
RETPOLINE [31] - - - " - -

IPREDD [32] - - - - - -
SSBD [33] - - - - -
PSFD [34] - - - - - -

F+RETP+SSBD - - -
S+RETP+SSBD J · Karch 7 -
BLADE [35] J · Kct 3 - - - -

SWIVEL-CET [36] J · Kmem 7
SERBERUS (ours) J · Kct 3

TABLE 1: SERBERUS versus software mitigations for existing hardware.
Leakage: SERBERUS targets the CT leakage model J · Kct; J · Kmem and
J · Karch are inapplicable to CT code [25]. Speculation primitives: com-
plete mitigation without disabling speculation; disables/blocks spec-
ulation primitive (for implicitly disabled); incomplete mitigation;
" creates opportunities for speculation primitive to introduce transient
execution; - no mitigation. SERBERUS is the only defense for the CT
leakage model to mitigate leakage due to all speculation primitives.

that limit their adoption. Several software mitigations tar-
get existing hardware (Tab. 1). However, the most robust of
these, Swivel-CET [36], is not suitable for securing CT code
(§2.2.2) [25].

This Paper. We present SERBERUS,3 the first com-
prehensive software mitigation for hardening CT code against
Spectre attacks involving any combination of the PHT, BTB,
RSB, STL, and PSF speculation primitives (Tab. 1). SER-
BERUS minimally disables speculation primitives with exist-
ing hardware speculation controls [41], doing so only when a
performance advantage is clear. It is readily deployable on ex-
isting hardware and outperforms state-of-the-art mitigations
on the cryptographic routines we evaluate (§6). SERBERUS is
based on three key insights.

Insight 1: Hardware model. Mitigating Spectre attacks in
software is challenged by (i) the impracticality of reasoning
about unconstrained transient control-flow [42], and (ii) the
overhead of managing unconstrained transient data-flow [43].
Like prior work [36], we observe that lightweight (negligible
overhead) hardware control-flow integrity (CFI) protections,
like Intel CET [44], constrain transient control-flow to the
extent that it may be comprehensively considered by software
analyses. Thus, SERBERUS requires that such CFI protections
are enabled in the target hardware. Moreover, we show for
the first time that while Spectre-STL4 can be efficiently mit-
igated in software, Spectre-PSF must be disabled to retain
performance. Thus, SERBERUS requires the PSFD speculation

3SERBERUS is named after Cerberus, a three-headed dog (representing its
three mitigation passes) of Greek mythology with a serpentine tail (our
hardware model ASP) guarding the gates of Hades to prevent the dead
(transient executions) from escaping (exfiltrating secrets) to the overworld
(via transmitters).

4Spectre-STL denotes Spectre leakage enabled by the STL speculation
primitive.

LLSCT: Implementation of SERBERUS for LLVM

• Implemented as three of LLVM IR and machine passes
• Requires no user annotations
• Benchmarked runtime performance overhead over insecure baseline
• Evaluated against state-of-the-art mitigations:
• lfence+retpoline+ssbd
• slh+retpoline+ssbd

• Testing setup: Intel 12th-gen Core i9-12900KS processor (supports
Intel CET)
• Workloads: crypto primitives from OpenSSL, Libsodium, and HACL*

50

51

libsodium
salsa20

64B

libsodium
sha256

64B

libsodium
sha256
8KB

hacl
chacha20

8KB

hacl
poly1305

8KB

hacl
curve25519

64B

openssl
sha256

64B

openssl
sha256
8KB

openssl
chacha20

8KB

openssl
curve25519

64B

geomean
(all)

geomean
(8KB)

0

25

50

75

100

125

150

175

200

ov
er

he
ad

(%
)

99
.0

70
.5

26
.7

20
.1

10
4.

6

23
.1

27
3.

8

45
.3

12
2.

6

12
.5

67
.8

58
.7

1.
2

69
.1

38
.8

15
.1

1.
6

19
.6

11
1.

8

6.
6 11

.9

10
.5 24

.9

14
.1

13
.4

16
.1

1.
3

16
.5

0.
9

16
.2

18
4.

4

3.
3 10

.6

8.
3 20

.4

6.
4

lfence+retpoline+ssbd
slh+retpoline+ssbd LLSCT

libsodium
salsa20

64B

libsodium
sha256

64B

libsodium
sha256
8KB

hacl
chacha20

8KB

hacl
poly1305

8KB

hacl
curve25519

64B

openssl
sha256

64B

openssl
sha256
8KB

openssl
chacha20

8KB

openssl
curve25519

64B

geomean
(all)

geomean
(8KB)

0

25

50

75

100

125

150

175

200

ov
er

he
ad

(%
)

99
.0

70
.5

26
.7

20
.1

10
4.

6

23
.1

27
3.

8

45
.3

12
2.

6

12
.5

67
.8

58
.7

1.
2

69
.1

38
.8

15
.1

1.
6

19
.6

11
1.

8

6.
6 11

.9

10
.5 24

.9

14
.1

13
.4

16
.1

1.
3

16
.5

0.
9

16
.2

18
4.

4

3.
3 10

.6

8.
3 20

.4

6.
4

lfence+retpoline+ssbd
slh+retpoline+ssbd LLSCT

libsodium
salsa20

64B

libsodium
sha256

64B

libsodium
sha256
8KB

hacl
chacha20

8KB

hacl
poly1305

8KB

hacl
curve25519

64B

openssl
sha256

64B

openssl
sha256
8KB

openssl
chacha20

8KB

openssl
curve25519

64B

geomean
(all)

geomean
(8KB)

0

25

50

75

100

125

150

175

200

ov
er

he
ad

(%
)

99
.0

70
.5

26
.7

20
.1

10
4.

6

23
.1

27
3.

8

45
.3

12
2.

6

12
.5

67
.8

58
.7

1.
2

69
.1

38
.8

15
.1

1.
6

19
.6

11
1.

8

6.
6 11

.9

10
.5 24

.9

14
.1

13
.4

16
.1

1.
3

16
.5

0.
9

16
.2

18
4.

4

3.
3 10

.6

8.
3 20

.4

6.
4

lfence+retpoline+ssbd
slh+retpoline+ssbd LLSCT

libsodium
salsa20

64B

libsodium
sha256

64B

libsodium
sha256
8KB

hacl
chacha20

8KB

hacl
poly1305

8KB

hacl
curve25519

64B

openssl
sha256

64B

openssl
sha256
8KB

openssl
chacha20

8KB

openssl
curve25519

64B

geomean
(all)

geomean
(8KB)

0

25

50

75

100

125

150

175

200

ov
er

he
ad

(%
)

99
.0

70
.5

26
.7

20
.1

10
4.

6

23
.1

27
3.

8

45
.3

12
2.

6

12
.5

67
.8

58
.7

1.
2

69
.1

38
.8

15
.1

1.
6

19
.6

11
1.

8

6.
6 11

.9

10
.5 24

.9

14
.1

13
.4

16
.1

1.
3

16
.5

0.
9

16
.2

18
4.

4

3.
3 10

.6

8.
3 20

.4

6.
4

lfence+retpoline+ssbd
slh+retpoline+ssbd LLSCT

Conclusions and Future Work

• SERBERUS is the first software mitigation for Spectre-
PHT/BTB/RSB/STL leakage in CT programs
• LLSCT: implementation of SERBERUS for LLVM
• LLSCT outperforms state-of-the-art mitigations in the crypto

primitives we evaluate while offering stronger security guarantees
• Future work: overcoming performance limitations of applying LLSCT

more broadly in non-crypto-code

52

Questions?

nmosier@stanford.edu

53

f = LFENCE
r = retpoline

fps = function-private stacks

slh = speculative load hardening
ssbd = STL disable

libsodium
salsa20

64B

libsodium
sha256

64B

libsodium
sha256
8KB

hacl
chacha20

8KB

hacl
poly1305

8KB

hacl
curve25519

64B

openssl
sha256

64B

openssl
sha256
8KB

openssl
chacha20

8KB

openssl
curve25519

64B

geomean
(all)

geomean
(8KB)

0

25

50

75

100

125

150

175

200

ov
er

he
ad

(%
)

f
99

.0

f
r

70
.5

f
26

.7

20
.1

f
10

4.
6

f
23

.1

f
27

3.
8

f
45

.3 f
12

2.
6

f
12

.5

f
67

.8

f
58

.7

1.
2 s

r
ss

bd
69

.1

s
ss

bd
38

.8

r
15

.1

1.
6 s

19
.6

s
r

11
1.

8

6.
6

s
11

.9

s
10

.5

s
24

.9

14
.1

f
24

.2

f
36

.4

0.
2 f

20
.7

1.
5

f
15

2.
7

f
59

0.
6

f
13

.8

f
36

.4

f
13

2.
0

f
62

.8

f
13

.8

f
15

.8

f
34

.0

-0
.2 f

18
.3

1.
5

f
16

6.
5

f
62

8.
7

f
11

.4 f
39

.6

f
16

3.
2

f
64

.8

f
13

.3

f
13

.4

f
16

.1

1.
3 f

16
.5

0.
9 f

16
.2

f
fp

s
18

4.
4

3.
3 10

.6

8.
3

f
20

.4

6.
4

f+retp+ssbd
s+retp+ssbd

llsct-nostl
llsct-psf
llsct

libsodium
salsa20

64B

libsodium
sha256

64B

libsodium
sha256
8KB

hacl
chacha20

8KB

hacl
poly1305

8KB

hacl
curve25519

64B

openssl
sha256

64B

openssl
sha256
8KB

openssl
chacha20

8KB

openssl
curve25519

64B

geomean
(all)

geomean
(8KB)

0

25

50

75

100

125

150

175

200
ov

er
he

ad
(%

)

f
99

.0

f
r

70
.5

f
26

.7

20
.1

f
10

4.
6

f
23

.1

f
27

3.
8

f
45

.3 f
12

2.
6

f
12

.5

f
67

.8

f
58

.7

1.
2 s

r
ss

bd
69

.1

s
ss

bd
38

.8

r
15

.1

1.
6 s

19
.6

s
r

11
1.

8

6.
6

s
11

.9

s
10

.5

s
24

.9

14
.1

f
24

.2

f
36

.4

0.
2 f

20
.7

1.
5

f
15

2.
7

f
59

0.
6

f
13

.8

f
36

.4

f
13

2.
0

f
62

.8

f
13

.8

f
15

.8

f
34

.0

-0
.2 f

18
.3

1.
5

f
16

6.
5

f
62

8.
7

f
11

.4 f
39

.6

f
16

3.
2

f
64

.8

f
13

.3

f
13

.4

f
16

.1

1.
3 f

16
.5

0.
9 f

16
.2

f
fp

s
18

4.
4

3.
3 10

.6

8.
3

f
20

.4

6.
4

f+retp+ssbd
s+retp+ssbd

llsct-nostl
llsct-psf
llsct

libsodium
salsa20

64B

libsodium
sha256

64B

libsodium
sha256
8KB

hacl
chacha20

8KB

hacl
poly1305

8KB

hacl
curve25519

64B

openssl
sha256

64B

openssl
sha256
8KB

openssl
chacha20

8KB

openssl
curve25519

64B

geomean
(all)

geomean
(8KB)

0

25

50

75

100

125

150

175

200

ov
er

he
ad

(%
)

f
99

.0

f
r

70
.5

f
26

.7

20
.1

f
10

4.
6

f
23

.1

f
27

3.
8

f
45

.3 f
12

2.
6

f
12

.5

f
67

.8

f
58

.7

1.
2 s

r
ss

bd
69

.1

s
ss

bd
38

.8

r
15

.1

1.
6 s

19
.6

s
r

11
1.

8

6.
6

s
11

.9

s
10

.5

s
24

.9

14
.1

f
24

.2

f
36

.4

0.
2 f

20
.7

1.
5

f
15

2.
7

f
59

0.
6

f
13

.8

f
36

.4

f
13

2.
0

f
62

.8

f
13

.8

f
15

.8

f
34

.0

-0
.2 f

18
.3

1.
5

f
16

6.
5

f
62

8.
7

f
11

.4 f
39

.6

f
16

3.
2

f
64

.8

f
13

.3

f
13

.4

f
16

.1

1.
3 f

16
.5

0.
9 f

16
.2

f
fp

s
18

4.
4

3.
3 10

.6

8.
3

f
20

.4

6.
4

f+retp+ssbd
s+retp+ssbd

llsct-nostl
llsct-psf
llsct

59

libsodium
salsa20

64B

libsodium
sha256

64B

libsodium
sha256
8KB

hacl
chacha20

8KB

hacl
poly1305

8KB

hacl
curve25519

64B

openssl
sha256

64B

openssl
sha256
8KB

openssl
chacha20

8KB

openssl
curve25519

64B

geomean
(all)

geomean
(8KB)

0

50

100

ov
er

he
ad

(%
)

f
99

.0

f
r

70
.5

f
26

.7

20
.1 f

10
4.

6

f
23

.1 f
27

3.
8

f
45

.3

f
12

2.
6

f
12

.5 f
67

.8

f
58

.7

1.
2 s

r
ss

bd
69

.1

s
ss

bd
38

.8

r 1
5.

1

1.
6

s
19

.6 s
r

11
1.

8

6.
6

s
11

.9

s
10

.5

s
24

.9

14
.1

f
24

.2

f
36

.4

0.
2

f
20

.7

1.
5

f
15

2.
7

f
59

0.
6

f
13

.8

f
36

.4 f
13

2.
0

f
62

.8

f
13

.8

f
15

.8

f
34

.0

-0
.2 f
18

.3

1.
5

f
16

6.
5

f
62

8.
7

f
11

.4

f
39

.6

f
16

3.
2

f
64

.8

f
13

.3

f
13

.4

f
16

.1

1.
3

f
16

.5

0.
9

f
16

.2

f
18

4.
4

3.
3 10

.6

8.
3

f
20

.4

6.
4

f+retp+ssbd
s+retp+ssbd

llsct-nostl
llsct-psf
llsct

Figure 4: Runtime overheads of mitigations for crypto primitives in Libsodium, HACL⇤, and OpenSSL relative to code compiled with
no mitigations. Segments within the same bar indicate the additional overhead incurred by layering on the mitigation component. We
label components with �15% overhead (“f” = LFENCE, “s” = SLH, “r” = RETPOLINE, “ssbd” = SSBD speculation control). Total percent
overhead is at the top of each bar. Overheads >100% are cut off.

code performance. LLSCT introduces half the overhead
(6.4%) of the next best mitigation, S+RETP+SSBD (14.1%),
for large buffer sizes (8 KB). This is because SERBERUS’s
loop-aware transient CFG construction (§5.1.1) prioritizes
placing LFENCEs outside of loops in its Fence Insertion Pass;
both baselines require placing mitigations inside of loops.

LLSCT Variants. Both LLSCT-NOSTL (with the
stricter hardware model ASP-NOSTL) and LLSCT-PSF (with
the relaxed hardware model ASP+PSF) perform much worse
than LLSCT, in the worst case (OpenSSL SHA-256 64B)
incurring 590.6% and 628.7% overhead, respectively. Since
neither variant uses FPS, they add new source-sink pairs
(§6) which require inserting more fences, more than tripling
(62.8%/64.8%) the overhead relative to LLSCT (20.4%).
Clearly, FPS and SERBERUS’s default selection of source-
sink pairs are essential to LLSCT’s efficiency. Secondly,
there is no clear way to adapt SERBERUS to protect miti-
gate Spectre-PSF fully in software while maintaining SER-
BERUS’s low overhead. We conclude that the ASP hardware
model (§2.3.2, §3) is the best fit for the SERBERUS approach,
striking the ideal balance between enabling speculation prim-
itives that can be efficiently mitigated in software (PHT, BTB,
STL, RSB) and disabling those that cannot (PSF).

Baseline Mitigations. As expected, F+RETP+SSBD
performs worse than S+RETP+SSBD and LLSCT, since in-
serting LFENCEs after every conditional branch is expen-
sive [107]. However, S+RETP+SSBD surprisingly performs
worse than F+RETP+SSBD in some cases. For Libsodium’s
SHA-256 (8KB), S+RETP+SSBD’s overhead is over 10%
more than F+RETP+SSBD’s and over 35% more than LLSCT’s.
Fig. 4 shows that in this case, enabling SSBD on top of
SLH+RETPOLINE (which exhibits 12.6% overhead) incurs
significant additional overhead (26.1%). In contrast, enabling
SSBD for the insecure baseline NONE incurs < 1% overhead.
This difference is likely due to the complexity that SLH’s
masking operations introduce into the address calculation
of stores; with SSBD (i.e., without STL), stores must wait
for longer to perform. To our knowledge, no prior work
has investigated the interference between these two widely
deployed mitigations for PHT and STL.

Hardware Modes. The top segment of each bar in
Fig. 4 indicates the overhead of the mitigation’s hardware
mode (§6) when layered on top of its software mitigations.
The average overheads across all/8KB benchmarks for each
are the following: 2.5%/0.9% for F+RETP+SSBD with SSBD;

5.3%/4.7% for S+RETP+SSBD with SSBD; 2.5%/1.3% for
LLSCT-NOSTL with ASP-NOSTL; -0.2%/-0.4% for LLSCT-
PSF with ASP+PSF; and 1.85%/1.48% for LLSCT with ASP.

8. Related Work and Conclusions

Several works study detection, formal foundations, and
mitigation of Spectre attacks [25], [115].

Software Detection. Symbolic execution [42], [43],
[48], [103], [116], [117] is the most widely used technique to
detect Spectre vulnerabilities in programs. However, existing
tools do not scale well to large programs or to new speculation
primitives. For example, no existing detection tool can detect
Spectre-BTB vulnerabilities due to limitations of always-
mispredict semantics [25], [42], [103]. Other approaches in-
clude fuzzing [118]–[120] or static analysis [121], [122].

Formal Foundations. Recent work deploys for-
mal techniques to model and mitigate Spectre attacks [26],
[35], [43], [102]–[104], [104], [105], [108]. Patrignani and
Guarnieri [104] and Shivakumar et al. [108] both use formal
models to demonstrate the that LLVM’s SLH mitigation is
incomplete for Spectre-PHT. Fabian et al. [48] define an
extensible framework for composing semantics for individual
speculation primitives to model and detect Spectre leakage
due to their combinations. Mosier et al. [122] and Ponce-de-
León and Kinder [27] take an axiomatic approach inspired
by memory consistency models to model and detect program
instructions that may transiently access secrets.

Software Mitigation. Few compiler-based Spectre
mitigation proposals [25] are formally grounded [35] or pro-
tect against multiple Spectre variants [36], [123]. Some de-
tection tools [106], [122] can also mitigate detected Spectre
vulnerabilities but do not evaluate the performance of the
resulting program. None of these mitigations are readily de-
ployable in an existing toolchain, in contrast with LLVM’s
LFENCE and SLH mitigations (§6).

Conclusions. We present SERBERUS, the first com-
prehensive software mitigation for preventing Spectre-
PHT/BTB/RSB/STL/PSF leakage in CT programs. We prove
the correctness of SERBERUS using our operational seman-
tics, ASP, and implement it as a code artifact, LLSCT, in
the LLVM compiler infrastructure. We evaluate LLSCT on a
suite of cryptographic primitives from Libsodium, HACL⇤,
and OpenSSL, demonstrating significant performance (and
security) improvements over the state-of-the-art.

13

libsodium
salsa20

64B

libsodium
sha256

64B

libsodium
sha256
8KB

hacl
chacha20

8KB

hacl
poly1305

8KB

hacl
curve25519

64B

openssl
sha256

64B

openssl
sha256
8KB

openssl
chacha20

8KB

openssl
curve25519

64B

geomean
(all)

geomean
(8KB)

0

50

100

ov
er

he
ad

(%
)

f
99

.0

f
r

70
.5

f
26

.7

20
.1 f

10
4.

6

f
23

.1 f
27

3.
8

f
45

.3

f
12

2.
6

f
12

.5 f
67

.8

f
58

.7

1.
2 s

r
ss

bd
69

.1

s
ss

bd
38

.8

r 1
5.

1

1.
6

s
19

.6 s
r

11
1.

8

6.
6

s
11

.9

s
10

.5

s
24

.9

14
.1

f
24

.2

f
36

.4

0.
2

f
20

.7

1.
5

f
15

2.
7

f
59

0.
6

f
13

.8

f
36

.4 f
13

2.
0

f
62

.8

f
13

.8

f
15

.8

f
34

.0

-0
.2 f
18

.3

1.
5

f
16

6.
5

f
62

8.
7

f
11

.4

f
39

.6

f
16

3.
2

f
64

.8

f
13

.3

f
13

.4

f
16

.1

1.
3

f
16

.5

0.
9

f
16

.2

f
18

4.
4

3.
3 10

.6

8.
3

f
20

.4

6.
4

f+retp+ssbd
s+retp+ssbd

llsct-nostl
llsct-psf
llsct

Figure 4: Runtime overheads of mitigations for crypto primitives in Libsodium, HACL⇤, and OpenSSL relative to code compiled with
no mitigations. Segments within the same bar indicate the additional overhead incurred by layering on the mitigation component. We
label components with �15% overhead (“f” = LFENCE, “s” = SLH, “r” = RETPOLINE, “ssbd” = SSBD speculation control). Total percent
overhead is at the top of each bar. Overheads >100% are cut off.

code performance. LLSCT introduces half the overhead
(6.4%) of the next best mitigation, S+RETP+SSBD (14.1%),
for large buffer sizes (8 KB). This is because SERBERUS’s
loop-aware transient CFG construction (§5.1.1) prioritizes
placing LFENCEs outside of loops in its Fence Insertion Pass;
both baselines require placing mitigations inside of loops.

LLSCT Variants. Both LLSCT-NOSTL (with the
stricter hardware model ASP-NOSTL) and LLSCT-PSF (with
the relaxed hardware model ASP+PSF) perform much worse
than LLSCT, in the worst case (OpenSSL SHA-256 64B)
incurring 590.6% and 628.7% overhead, respectively. Since
neither variant uses FPS, they add new source-sink pairs
(§6) which require inserting more fences, more than tripling
(62.8%/64.8%) the overhead relative to LLSCT (20.4%).
Clearly, FPS and SERBERUS’s default selection of source-
sink pairs are essential to LLSCT’s efficiency. Secondly,
there is no clear way to adapt SERBERUS to protect miti-
gate Spectre-PSF fully in software while maintaining SER-
BERUS’s low overhead. We conclude that the ASP hardware
model (§2.3.2, §3) is the best fit for the SERBERUS approach,
striking the ideal balance between enabling speculation prim-
itives that can be efficiently mitigated in software (PHT, BTB,
STL, RSB) and disabling those that cannot (PSF).

Baseline Mitigations. As expected, F+RETP+SSBD
performs worse than S+RETP+SSBD and LLSCT, since in-
serting LFENCEs after every conditional branch is expen-
sive [107]. However, S+RETP+SSBD surprisingly performs
worse than F+RETP+SSBD in some cases. For Libsodium’s
SHA-256 (8KB), S+RETP+SSBD’s overhead is over 10%
more than F+RETP+SSBD’s and over 35% more than LLSCT’s.
Fig. 4 shows that in this case, enabling SSBD on top of
SLH+RETPOLINE (which exhibits 12.6% overhead) incurs
significant additional overhead (26.1%). In contrast, enabling
SSBD for the insecure baseline NONE incurs < 1% overhead.
This difference is likely due to the complexity that SLH’s
masking operations introduce into the address calculation
of stores; with SSBD (i.e., without STL), stores must wait
for longer to perform. To our knowledge, no prior work
has investigated the interference between these two widely
deployed mitigations for PHT and STL.

Hardware Modes. The top segment of each bar in
Fig. 4 indicates the overhead of the mitigation’s hardware
mode (§6) when layered on top of its software mitigations.
The average overheads across all/8KB benchmarks for each
are the following: 2.5%/0.9% for F+RETP+SSBD with SSBD;

5.3%/4.7% for S+RETP+SSBD with SSBD; 2.5%/1.3% for
LLSCT-NOSTL with ASP-NOSTL; -0.2%/-0.4% for LLSCT-
PSF with ASP+PSF; and 1.85%/1.48% for LLSCT with ASP.

8. Related Work and Conclusions

Several works study detection, formal foundations, and
mitigation of Spectre attacks [25], [115].

Software Detection. Symbolic execution [42], [43],
[48], [103], [116], [117] is the most widely used technique to
detect Spectre vulnerabilities in programs. However, existing
tools do not scale well to large programs or to new speculation
primitives. For example, no existing detection tool can detect
Spectre-BTB vulnerabilities due to limitations of always-
mispredict semantics [25], [42], [103]. Other approaches in-
clude fuzzing [118]–[120] or static analysis [121], [122].

Formal Foundations. Recent work deploys for-
mal techniques to model and mitigate Spectre attacks [26],
[35], [43], [102]–[104], [104], [105], [108]. Patrignani and
Guarnieri [104] and Shivakumar et al. [108] both use formal
models to demonstrate the that LLVM’s SLH mitigation is
incomplete for Spectre-PHT. Fabian et al. [48] define an
extensible framework for composing semantics for individual
speculation primitives to model and detect Spectre leakage
due to their combinations. Mosier et al. [122] and Ponce-de-
León and Kinder [27] take an axiomatic approach inspired
by memory consistency models to model and detect program
instructions that may transiently access secrets.

Software Mitigation. Few compiler-based Spectre
mitigation proposals [25] are formally grounded [35] or pro-
tect against multiple Spectre variants [36], [123]. Some de-
tection tools [106], [122] can also mitigate detected Spectre
vulnerabilities but do not evaluate the performance of the
resulting program. None of these mitigations are readily de-
ployable in an existing toolchain, in contrast with LLVM’s
LFENCE and SLH mitigations (§6).

Conclusions. We present SERBERUS, the first com-
prehensive software mitigation for preventing Spectre-
PHT/BTB/RSB/STL/PSF leakage in CT programs. We prove
the correctness of SERBERUS using our operational seman-
tics, ASP, and implement it as a code artifact, LLSCT, in
the LLVM compiler infrastructure. We evaluate LLSCT on a
suite of cryptographic primitives from Libsodium, HACL⇤,
and OpenSSL, demonstrating significant performance (and
security) improvements over the state-of-the-art.

13

lfence+retpoline+ssbd
slh+retpoline+ssbd

LLSCT

libsodium
salsa20

64B

libsodium
sha256

64B

libsodium
sha256
8KB

hacl
chacha20

8KB

hacl
poly1305

8KB

hacl
curve25519

64B

openssl
sha256

64B

openssl
sha256
8KB

openssl
chacha20

8KB

openssl
curve25519

64B

geomean
(all)

geomean
(8KB)

0

50

100

ov
er

he
ad

(%
)

f
99

.0

f
r

70
.5

f
26

.7

20
.1 f

10
4.

6

f
23

.1 f
27

3.
8

f
45

.3

f
12

2.
6

f
12

.5 f
67

.8

f
58

.7

1.
2 s

r
ss

bd
69

.1

s
ss

bd
38

.8

r 1
5.

1

1.
6

s
19

.6 s
r

11
1.

8

6.
6

s
11

.9

s
10

.5

s
24

.9

14
.1

f
24

.2

f
36

.4

0.
2

f
20

.7

1.
5

f
15

2.
7

f
59

0.
6

f
13

.8

f
36

.4 f
13

2.
0

f
62

.8

f
13

.8

f
15

.8

f
34

.0

-0
.2 f
18

.3

1.
5

f
16

6.
5

f
62

8.
7

f
11

.4

f
39

.6

f
16

3.
2

f
64

.8

f
13

.3

f
13

.4

f
16

.1

1.
3

f
16

.5

0.
9

f
16

.2

f
18

4.
4

3.
3 10

.6

8.
3

f
20

.4

6.
4

f+retp+ssbd
s+retp+ssbd

llsct-nostl
llsct-psf
llsct

Figure 4: Runtime overheads of mitigations for crypto primitives in Libsodium, HACL⇤, and OpenSSL relative to code compiled with
no mitigations. Segments within the same bar indicate the additional overhead incurred by layering on the mitigation component. We
label components with �15% overhead (“f” = LFENCE, “s” = SLH, “r” = RETPOLINE, “ssbd” = SSBD speculation control). Total percent
overhead is at the top of each bar. Overheads >100% are cut off.

code performance. LLSCT introduces half the overhead
(6.4%) of the next best mitigation, S+RETP+SSBD (14.1%),
for large buffer sizes (8 KB). This is because SERBERUS’s
loop-aware transient CFG construction (§5.1.1) prioritizes
placing LFENCEs outside of loops in its Fence Insertion Pass;
both baselines require placing mitigations inside of loops.

LLSCT Variants. Both LLSCT-NOSTL (with the
stricter hardware model ASP-NOSTL) and LLSCT-PSF (with
the relaxed hardware model ASP+PSF) perform much worse
than LLSCT, in the worst case (OpenSSL SHA-256 64B)
incurring 590.6% and 628.7% overhead, respectively. Since
neither variant uses FPS, they add new source-sink pairs
(§6) which require inserting more fences, more than tripling
(62.8%/64.8%) the overhead relative to LLSCT (20.4%).
Clearly, FPS and SERBERUS’s default selection of source-
sink pairs are essential to LLSCT’s efficiency. Secondly,
there is no clear way to adapt SERBERUS to protect miti-
gate Spectre-PSF fully in software while maintaining SER-
BERUS’s low overhead. We conclude that the ASP hardware
model (§2.3.2, §3) is the best fit for the SERBERUS approach,
striking the ideal balance between enabling speculation prim-
itives that can be efficiently mitigated in software (PHT, BTB,
STL, RSB) and disabling those that cannot (PSF).

Baseline Mitigations. As expected, F+RETP+SSBD
performs worse than S+RETP+SSBD and LLSCT, since in-
serting LFENCEs after every conditional branch is expen-
sive [107]. However, S+RETP+SSBD surprisingly performs
worse than F+RETP+SSBD in some cases. For Libsodium’s
SHA-256 (8KB), S+RETP+SSBD’s overhead is over 10%
more than F+RETP+SSBD’s and over 35% more than LLSCT’s.
Fig. 4 shows that in this case, enabling SSBD on top of
SLH+RETPOLINE (which exhibits 12.6% overhead) incurs
significant additional overhead (26.1%). In contrast, enabling
SSBD for the insecure baseline NONE incurs < 1% overhead.
This difference is likely due to the complexity that SLH’s
masking operations introduce into the address calculation
of stores; with SSBD (i.e., without STL), stores must wait
for longer to perform. To our knowledge, no prior work
has investigated the interference between these two widely
deployed mitigations for PHT and STL.

Hardware Modes. The top segment of each bar in
Fig. 4 indicates the overhead of the mitigation’s hardware
mode (§6) when layered on top of its software mitigations.
The average overheads across all/8KB benchmarks for each
are the following: 2.5%/0.9% for F+RETP+SSBD with SSBD;

5.3%/4.7% for S+RETP+SSBD with SSBD; 2.5%/1.3% for
LLSCT-NOSTL with ASP-NOSTL; -0.2%/-0.4% for LLSCT-
PSF with ASP+PSF; and 1.85%/1.48% for LLSCT with ASP.

8. Related Work and Conclusions

Several works study detection, formal foundations, and
mitigation of Spectre attacks [25], [115].

Software Detection. Symbolic execution [42], [43],
[48], [103], [116], [117] is the most widely used technique to
detect Spectre vulnerabilities in programs. However, existing
tools do not scale well to large programs or to new speculation
primitives. For example, no existing detection tool can detect
Spectre-BTB vulnerabilities due to limitations of always-
mispredict semantics [25], [42], [103]. Other approaches in-
clude fuzzing [118]–[120] or static analysis [121], [122].

Formal Foundations. Recent work deploys for-
mal techniques to model and mitigate Spectre attacks [26],
[35], [43], [102]–[104], [104], [105], [108]. Patrignani and
Guarnieri [104] and Shivakumar et al. [108] both use formal
models to demonstrate the that LLVM’s SLH mitigation is
incomplete for Spectre-PHT. Fabian et al. [48] define an
extensible framework for composing semantics for individual
speculation primitives to model and detect Spectre leakage
due to their combinations. Mosier et al. [122] and Ponce-de-
León and Kinder [27] take an axiomatic approach inspired
by memory consistency models to model and detect program
instructions that may transiently access secrets.

Software Mitigation. Few compiler-based Spectre
mitigation proposals [25] are formally grounded [35] or pro-
tect against multiple Spectre variants [36], [123]. Some de-
tection tools [106], [122] can also mitigate detected Spectre
vulnerabilities but do not evaluate the performance of the
resulting program. None of these mitigations are readily de-
ployable in an existing toolchain, in contrast with LLVM’s
LFENCE and SLH mitigations (§6).

Conclusions. We present SERBERUS, the first com-
prehensive software mitigation for preventing Spectre-
PHT/BTB/RSB/STL/PSF leakage in CT programs. We prove
the correctness of SERBERUS using our operational seman-
tics, ASP, and implement it as a code artifact, LLSCT, in
the LLVM compiler infrastructure. We evaluate LLSCT on a
suite of cryptographic primitives from Libsodium, HACL⇤,
and OpenSSL, demonstrating significant performance (and
security) improvements over the state-of-the-art.

13

Mitigating Spectre in Software

Serialization instructions (e.g., LFENCE)
Code rewriting (e.g., SLH)

Speculation controls (e.g., SSBD)

Serberus: Protecting Cryptographic Code from Spectres at Compile-Time

Abstract—We design and formally prove the completeness
of SERBERUS, the first comprehensive software mitigation for
hardening constant-time (CT) code against Spectre attacks
involving the following speculation primitives: PHT, BTB, RSB,
STL, and/or PSF. SERBERUS is based on three insights. First,
hardware control-flow integrity (CFI) protections restrict tran-
sient control-flow to the extent that it may be comprehensively
considered by software analyses. Second, traditional definitions
of CT code permit two unsafe code patterns that are almost
always capable of leaking secrets during transient execution.
Finally, once these code patterns are addressed, all Spectre
leakage of secrets in CT programs can be attributed to one
of four classes of taint primitives, instructions which can tran-
siently assign a secret value to a publicly-typed variable. We
empirically evaluate SERBERUS on cryptographic primitives in
the OPENSSL, LIBSODIUM, and HACL* libraries. SERBERUS
introduces 20.4% runtime overhead on average, compared to
24.9% for the next closest state-of-the-art software mitigation,
which features weaker security guarantees.

1. Introduction

The constant-time (CT) programming approach [1]–
[15] was designed to support the safe execution of secret-
processing programs, like cryptographic code [16]–[18], in
the face of hardware side-channel attacks. Concretely, CT
programming requires that only safe instructions, which cre-
ate operand-independent hardware resource usage, process
secrets. Unsafe instructions, or transmitters [19], typically
include: control-flow instructions, memory accesses, and
variable-time instructions (e.g., floating-point [20] or integer
division [13] instructions).

Unfortunately, common hardware optimizations enable
transient execution1 to steer secrets towards the operands
of (transient) transmitters, circumventing CT protections. In
Spectre attacks (our focus, §2.2) transient execution results
from control- or data-flow mispredictions at runtime [21]. On
modern processors, there are five well-documented sources
of such (mis)predictions, called speculation primitives [22]:
conditional branch prediction (PHT) [23], indirect branch
prediction (BTB) [23], store-to-load forwarding prediction
(STL) [24], predictive store forwarding (PSF) [25]–[27], and
return address prediction (RSB) [28].2

Hardening CT programs against all Spectre attacks in-
volving any combination of the aforementioned speculation
primitives is difficult. Suitable hardware mitigations have
been proposed [37]–[40], but require complex design changes

1Transient execution refers to the execution of instructions that are never
architecturally committed [21].

2Abbreviations are borrowed from recent work which surveys Spectre
attacks and software defenses [21], [25].

Mitigation Leakage Proof PHT BTB RSB STL PSF
INTEL-LFENCE [29] - - - - - -

LLVM-SLH [30] J · Karch 7 - - - -
RETPOLINE [31] - - - " - -

IPREDD [32] - - - - - -
SSBD [33] - - - - -
PSFD [34] - - - - - -

F+RETP+SSBD - - -
S+RETP+SSBD J · Karch 7 -
BLADE [35] J · Kct 3 - - - -

SWIVEL-CET [36] J · Kmem 7
SERBERUS (ours) J · Kct 3

TABLE 1: SERBERUS versus software mitigations for existing hardware.
Leakage: SERBERUS targets the CT leakage model J · Kct; J · Kmem and
J · Karch are inapplicable to CT code [25]. Speculation primitives: com-
plete mitigation without disabling speculation; disables/blocks spec-
ulation primitive (for implicitly disabled); incomplete mitigation;
" creates opportunities for speculation primitive to introduce transient
execution; - no mitigation. SERBERUS is the only defense for the CT
leakage model to mitigate leakage due to all speculation primitives.

that limit their adoption. Several software mitigations tar-
get existing hardware (Tab. 1). However, the most robust of
these, Swivel-CET [36], is not suitable for securing CT code
(§2.2.2) [25].

This Paper. We present SERBERUS,3 the first com-
prehensive software mitigation for hardening CT code against
Spectre attacks involving any combination of the PHT, BTB,
RSB, STL, and PSF speculation primitives (Tab. 1). SER-
BERUS minimally disables speculation primitives with exist-
ing hardware speculation controls [41], doing so only when a
performance advantage is clear. It is readily deployable on ex-
isting hardware and outperforms state-of-the-art mitigations
on the cryptographic routines we evaluate (§6). SERBERUS is
based on three key insights.

Insight 1: Hardware model. Mitigating Spectre attacks in
software is challenged by (i) the impracticality of reasoning
about unconstrained transient control-flow [42], and (ii) the
overhead of managing unconstrained transient data-flow [43].
Like prior work [36], we observe that lightweight (negligible
overhead) hardware control-flow integrity (CFI) protections,
like Intel CET [44], constrain transient control-flow to the
extent that it may be comprehensively considered by software
analyses. Thus, SERBERUS requires that such CFI protections
are enabled in the target hardware. Moreover, we show for
the first time that while Spectre-STL4 can be efficiently mit-
igated in software, Spectre-PSF must be disabled to retain
performance. Thus, SERBERUS requires the PSFD speculation

3SERBERUS is named after Cerberus, a three-headed dog (representing its
three mitigation passes) of Greek mythology with a serpentine tail (our
hardware model ASP) guarding the gates of Hades to prevent the dead
(transient executions) from escaping (exfiltrating secrets) to the overworld
(via transmitters).

4Spectre-STL denotes Spectre leakage enabled by the STL speculation
primitive.

Efficiently mitigating all Spectre leakage due to any combination of
{PHT, BTB, RSB, STL, PSF} is hard.

Two approaches:

Serberus: Protecting Cryptographic Code from Spectres at Compile-Time

Abstract—We design and formally prove the completeness
of SERBERUS, the first comprehensive software mitigation for
hardening constant-time (CT) code against Spectre attacks
involving the following speculation primitives: PHT, BTB, RSB,
STL, and/or PSF. SERBERUS is based on three insights. First,
hardware control-flow integrity (CFI) protections restrict tran-
sient control-flow to the extent that it may be comprehensively
considered by software analyses. Second, traditional definitions
of CT code permit two unsafe code patterns that are almost
always capable of leaking secrets during transient execution.
Finally, once these code patterns are addressed, all Spectre
leakage of secrets in CT programs can be attributed to one
of four classes of taint primitives, instructions which can tran-
siently assign a secret value to a publicly-typed variable. We
empirically evaluate SERBERUS on cryptographic primitives in
the OPENSSL, LIBSODIUM, and HACL* libraries. SERBERUS
introduces 20.4% runtime overhead on average, compared to
24.9% for the next closest state-of-the-art software mitigation,
which features weaker security guarantees.

1. Introduction

The constant-time (CT) programming approach [1]–
[15] was designed to support the safe execution of secret-
processing programs, like cryptographic code [16]–[18], in
the face of hardware side-channel attacks. Concretely, CT
programming requires that only safe instructions, which cre-
ate operand-independent hardware resource usage, process
secrets. Unsafe instructions, or transmitters [19], typically
include: control-flow instructions, memory accesses, and
variable-time instructions (e.g., floating-point [20] or integer
division [13] instructions).

Unfortunately, common hardware optimizations enable
transient execution1 to steer secrets towards the operands
of (transient) transmitters, circumventing CT protections. In
Spectre attacks (our focus, §2.2) transient execution results
from control- or data-flow mispredictions at runtime [21]. On
modern processors, there are five well-documented sources
of such (mis)predictions, called speculation primitives [22]:
conditional branch prediction (PHT) [23], indirect branch
prediction (BTB) [23], store-to-load forwarding prediction
(STL) [24], predictive store forwarding (PSF) [25]–[27], and
return address prediction (RSB) [28].2

Hardening CT programs against all Spectre attacks in-
volving any combination of the aforementioned speculation
primitives is difficult. Suitable hardware mitigations have
been proposed [37]–[40], but require complex design changes

1Transient execution refers to the execution of instructions that are never
architecturally committed [21].

2Abbreviations are borrowed from recent work which surveys Spectre
attacks and software defenses [21], [25].

Mitigation Leakage Proof PHT BTB RSB STL PSF
INTEL-LFENCE [29] - - - - - -

LLVM-SLH [30] J · Karch 7 - - - -
RETPOLINE [31] - - - " - -

IPREDD [32] - - - - - -
SSBD [33] - - - - -
PSFD [34] - - - - - -

F+RETP+SSBD - - -
S+RETP+SSBD J · Karch 7 -
BLADE [35] J · Kct 3 - - - -

SWIVEL-CET [36] J · Kmem 7
SERBERUS (ours) J · Kct 3

TABLE 1: SERBERUS versus software mitigations for existing hardware.
Leakage: SERBERUS targets the CT leakage model J · Kct; J · Kmem and
J · Karch are inapplicable to CT code [25]. Speculation primitives: com-
plete mitigation without disabling speculation; disables/blocks spec-
ulation primitive (for implicitly disabled); incomplete mitigation;
" creates opportunities for speculation primitive to introduce transient
execution; - no mitigation. SERBERUS is the only defense for the CT
leakage model to mitigate leakage due to all speculation primitives.

that limit their adoption. Several software mitigations tar-
get existing hardware (Tab. 1). However, the most robust of
these, Swivel-CET [36], is not suitable for securing CT code
(§2.2.2) [25].

This Paper. We present SERBERUS,3 the first com-
prehensive software mitigation for hardening CT code against
Spectre attacks involving any combination of the PHT, BTB,
RSB, STL, and PSF speculation primitives (Tab. 1). SER-
BERUS minimally disables speculation primitives with exist-
ing hardware speculation controls [41], doing so only when a
performance advantage is clear. It is readily deployable on ex-
isting hardware and outperforms state-of-the-art mitigations
on the cryptographic routines we evaluate (§6). SERBERUS is
based on three key insights.

Insight 1: Hardware model. Mitigating Spectre attacks in
software is challenged by (i) the impracticality of reasoning
about unconstrained transient control-flow [42], and (ii) the
overhead of managing unconstrained transient data-flow [43].
Like prior work [36], we observe that lightweight (negligible
overhead) hardware control-flow integrity (CFI) protections,
like Intel CET [44], constrain transient control-flow to the
extent that it may be comprehensively considered by software
analyses. Thus, SERBERUS requires that such CFI protections
are enabled in the target hardware. Moreover, we show for
the first time that while Spectre-STL4 can be efficiently mit-
igated in software, Spectre-PSF must be disabled to retain
performance. Thus, SERBERUS requires the PSFD speculation

3SERBERUS is named after Cerberus, a three-headed dog (representing its
three mitigation passes) of Greek mythology with a serpentine tail (our
hardware model ASP) guarding the gates of Hades to prevent the dead
(transient executions) from escaping (exfiltrating secrets) to the overworld
(via transmitters).

4Spectre-STL denotes Spectre leakage enabled by the STL speculation
primitive.

Disable speculation primitive

Serberus: Protecting Cryptographic Code from Spectres at Compile-Time

Abstract—We design and formally prove the completeness
of SERBERUS, the first comprehensive software mitigation for
hardening constant-time (CT) code against Spectre attacks
involving the following speculation primitives: PHT, BTB, RSB,
STL, and/or PSF. SERBERUS is based on three insights. First,
hardware control-flow integrity (CFI) protections restrict tran-
sient control-flow to the extent that it may be comprehensively
considered by software analyses. Second, traditional definitions
of CT code permit two unsafe code patterns that are almost
always capable of leaking secrets during transient execution.
Finally, once these code patterns are addressed, all Spectre
leakage of secrets in CT programs can be attributed to one
of four classes of taint primitives, instructions which can tran-
siently assign a secret value to a publicly-typed variable. We
empirically evaluate SERBERUS on cryptographic primitives in
the OPENSSL, LIBSODIUM, and HACL* libraries. SERBERUS
introduces 20.4% runtime overhead on average, compared to
24.9% for the next closest state-of-the-art software mitigation,
which features weaker security guarantees.

1. Introduction

The constant-time (CT) programming approach [1]–
[15] was designed to support the safe execution of secret-
processing programs, like cryptographic code [16]–[18], in
the face of hardware side-channel attacks. Concretely, CT
programming requires that only safe instructions, which cre-
ate operand-independent hardware resource usage, process
secrets. Unsafe instructions, or transmitters [19], typically
include: control-flow instructions, memory accesses, and
variable-time instructions (e.g., floating-point [20] or integer
division [13] instructions).

Unfortunately, common hardware optimizations enable
transient execution1 to steer secrets towards the operands
of (transient) transmitters, circumventing CT protections. In
Spectre attacks (our focus, §2.2) transient execution results
from control- or data-flow mispredictions at runtime [21]. On
modern processors, there are five well-documented sources
of such (mis)predictions, called speculation primitives [22]:
conditional branch prediction (PHT) [23], indirect branch
prediction (BTB) [23], store-to-load forwarding prediction
(STL) [24], predictive store forwarding (PSF) [25]–[27], and
return address prediction (RSB) [28].2

Hardening CT programs against all Spectre attacks in-
volving any combination of the aforementioned speculation
primitives is difficult. Suitable hardware mitigations have
been proposed [37]–[40], but require complex design changes

1Transient execution refers to the execution of instructions that are never
architecturally committed [21].

2Abbreviations are borrowed from recent work which surveys Spectre
attacks and software defenses [21], [25].

Mitigation Leakage Proof PHT BTB RSB STL PSF
INTEL-LFENCE [29] - - - - - -

LLVM-SLH [30] J · Karch 7 - - - -
RETPOLINE [31] - - - " - -

IPREDD [32] - - - - - -
SSBD [33] - - - - -
PSFD [34] - - - - - -

F+RETP+SSBD - - -
S+RETP+SSBD J · Karch 7 -
BLADE [35] J · Kct 3 - - - -

SWIVEL-CET [36] J · Kmem 7
SERBERUS (ours) J · Kct 3

TABLE 1: SERBERUS versus software mitigations for existing hardware.
Leakage: SERBERUS targets the CT leakage model J · Kct; J · Kmem and
J · Karch are inapplicable to CT code [25]. Speculation primitives: com-
plete mitigation without disabling speculation; disables/blocks spec-
ulation primitive (for implicitly disabled); incomplete mitigation;
" creates opportunities for speculation primitive to introduce transient
execution; - no mitigation. SERBERUS is the only defense for the CT
leakage model to mitigate leakage due to all speculation primitives.

that limit their adoption. Several software mitigations tar-
get existing hardware (Tab. 1). However, the most robust of
these, Swivel-CET [36], is not suitable for securing CT code
(§2.2.2) [25].

This Paper. We present SERBERUS,3 the first com-
prehensive software mitigation for hardening CT code against
Spectre attacks involving any combination of the PHT, BTB,
RSB, STL, and PSF speculation primitives (Tab. 1). SER-
BERUS minimally disables speculation primitives with exist-
ing hardware speculation controls [41], doing so only when a
performance advantage is clear. It is readily deployable on ex-
isting hardware and outperforms state-of-the-art mitigations
on the cryptographic routines we evaluate (§6). SERBERUS is
based on three key insights.

Insight 1: Hardware model. Mitigating Spectre attacks in
software is challenged by (i) the impracticality of reasoning
about unconstrained transient control-flow [42], and (ii) the
overhead of managing unconstrained transient data-flow [43].
Like prior work [36], we observe that lightweight (negligible
overhead) hardware control-flow integrity (CFI) protections,
like Intel CET [44], constrain transient control-flow to the
extent that it may be comprehensively considered by software
analyses. Thus, SERBERUS requires that such CFI protections
are enabled in the target hardware. Moreover, we show for
the first time that while Spectre-STL4 can be efficiently mit-
igated in software, Spectre-PSF must be disabled to retain
performance. Thus, SERBERUS requires the PSFD speculation

3SERBERUS is named after Cerberus, a three-headed dog (representing its
three mitigation passes) of Greek mythology with a serpentine tail (our
hardware model ASP) guarding the gates of Hades to prevent the dead
(transient executions) from escaping (exfiltrating secrets) to the overworld
(via transmitters).

4Spectre-STL denotes Spectre leakage enabled by the STL speculation
primitive.

Prevent secret-dependent transmitters

Three tools:

70

