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Hardware underpins software security

Caches
[Osvik+, CT-RSA ’06]
[Yarom+, USENIX ’14]

Digit-serial multiplication
[Großschäd+, ISISC ‘09]

Division early exit
[Coppens, S&P ‘09]

Coherence
[Guanciale+, Oakland ‘16]

Subnormal floating point
[Andrysco+, S&P ‘15]

OoO Execution
[Lipp+, USENIX ‘18]

Silent stores
[Vicarte+, ISCA ‘21]

Computation reuse
[Vicarte+, ISCA ‘21]

Value prediction
[Vicarte+, ISCA ‘21]

Register-file compression
[Vicarte+, ISCA ‘21]

Indirect memory prefetchers
[Vicarte+, ISCA ‘21]

Compressed Caches
[Tsai+, ISCA ‘20]

Speculation
[Kocher+, S&P ‘19]

DRAM
[Google Project Zero ‘15]

If one considers the union of all optimizations 
on this slide, no instruction 
operand/result or data at rest is safe 
[Vicarte+, ISCA’21].
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Hardware underpins software security

hardware-software contracts security contractsmemory models

Leakage 
Containment 

Models (LCMs)

Lay the 
foundation 
for LCMs!
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Roadmap

• Background: Memory Consistency Models (MCMs)

• Leakage Containment Models (LCMs): Modeling Microarchitectural Leakage

• Clou: Detecting and Mitigating Microarchitectural Leakage in Programs
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Axiomatic Memory 
Consistency Model 

(MCM)

MCMs:
• Define the legal ordering + visibility of shared 

memory accesses
Axiomatic MCMs:
• Model architectural executions of a program 

as directed graphs
• Nodes: instructions
• Directed edges: happens-before relations

• Consistency predicate defines legal executions

control-flow

data-flow

instruction

Execution Graph

permitted

forbidden

Architectural Executions

Consistency 
Predicate

𝑒!

𝑒!
𝑒"

𝑒#

𝑒"
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Used by LCMs to 
define software-
visible execution 
behaviors of a 
program



Modeling program executions axiomatically with 
control- and data-flow happens-before relations

control-flow

Encodes branch outcomes.

po
BR cc, L1, L2

L1

po
L2

po
BR cc, L1, L2

if (cc) L1 else L2

ST [x], 0

LD r1, [x]

...

... = A[x]

LD r1, [x]

LD/ST r2, [A + r1]

...

A; B;

A
po

B

ST [x], 0

ST [x], 1

...

- or -

data-flow

Encodes dynamic data-flow through memory.

rf, co, fr

reads-from (rf)
relates storeàload if load 

reads from store

x = 0;
... = x;

rf

coherence order (co)
constructs a total order on 

same-address stores

co

x = 0;
x = 1;

dependencies

Encodes syntactic data-flow through registers.

addr, data, ctrl

address dependency (addr): 
relates loadàaccess where accesses 

uses load in address computation

addr

Used later on 
for classifying 
leakage by 
severity 6



Roadmap

• Background: Memory Consistency Models (MCMs)

• Leakage Containment Models (LCMs): Modeling Microarchitectural Leakage

• Clou: Detecting and Mitigating Microarchitectural Leakage in Programs
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Microarchitectural data-flow enables leakage

z = A[3]

y = A[3]
- -

- -

- -

- -

- -

y = A[x]; z = A[3];

Address Data

Cache

Program 1 Program 2

Ingredients for modeling 
microarchitectural leakage:
1. Instructions exhibit >1 

different executions.
2. Which execution is realized 

depends on hardware 
information flows.
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Microarchitectural data-flow enables leakage

z = A[3]

y = A[3]
- -

A+3 ………………

- -

- -

- -

A[3]

y = A[x]; z = A[3];

microarchitectural
data-flow

Address Data

Cache

write

read

transmitter

receiver

😇

😈

cache hit (5 ns)

leaks: x = 3

Program 1 Program 2

Ingredients for modeling 
microarchitectural leakage:
1. Instructions exhibit >1 

different executions.
2. Which execution is realized 

depends on hardware 
information flows.
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Microarchitectural data-flow enables leakage

z = A[3]

y = A[3]
- -

A+3 ………………

- -

- -

- -

A[3]

y = A[x]; z = A[3];

microarchitectural
data-flow

Address Data

Cache

write

read

transmitter

receiver

😇

😈

cache hit (5 ns)

leaks: x = 3

- -

- -

- -

- -

- -

Address Data

Cache

z = A[3]

y = A[5]

Program 1 Program 2
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Microarchitectural data-flow enables leakage

z = A[3]

y = A[3]
- -

A+3 ………………

- -

- -

- -

A[3]

y = A[x]; z = A[3];

microarchitectural
data-flow

Address Data

Cache

write

read

transmitter

receiver

😇

😈

cache hit (5 ns)

leaks: x = 3

- -

- -

- -

A+5 ………………

- -

Address Data

Cache

z = A[3]

y = A[5]

⊤
microarchitectural

data-flow

cache miss (50 ns)

leaks: x ≠ 3

😇

😈

transmitter

receiver

write

read

Program 1 Program 2

11



Microarchitectural control flow increases 
leakage scope

1:

2:

3:

4:

Spectre v1: Bounds Check Bypass

// idx out-of-bounds
if (idx < A_size) {

char secret = A[idx];
tmp = B[secret];

}

mispredicted branch

Modern hardware predicts branch outcomes and speculatively executes instructions along predicted paths. 12



Microarchitectural control flow increases 
leakage scope

1:

2:

3:

4:

Spectre v1: Bounds Check Bypass

// idx out-of-bounds
if (idx < A_size) {

char secret = A[idx];
tmp = B[secret];

}

mispredicted branch

Modern hardware predicts branch outcomes and speculatively executes instructions along predicted paths.

out-of-bounds load
secret-dependent load

- -

- -

- -

- -

- -

B+42 ………………

- -

- -

- -

- -

Address Data

Cache

array B
write

void attacker() {
x = B[0];
x = B[1];
...
x = B[42];

}

read

microarchitectural
data-flow

😇

😈 Cache hit! Leaks secret = 42
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MCMs lay the foundation for LCMs but fall short 
for modeling microarchitectural leakage

if (idx < A_size) {
char secret = A[idx];
tmp = B[secret];

}

LD r0, [idx]

LD r1, [A_size]

BR r0 >= r1, end

LD r2, [A+r0]

LD r3, [B+r2]

⊤

⊤

transmitter

receiver

😇

😈

po

po

po

po

rf

rf

MCMs do not capture microarchitectural control-flow or microarchitectural data-flow 
… but they tell us how to construct a model that does!

applying MCM axioms

To model microarchitectural leakage, 
we need:
1. Architectural semantics (MCMs)
2. Microarchitectural semantics (???)LC

M
s microarchitectural 

data-flow 
(missing in MCMs)

14



Deriving a microarchitectural 
semantics from architectural MCMs

MCMs / LCMs 
Arch. Semantics

LCMs Microarch. 
Semantics

abstraction level architecture microarchitecture

communication medium memory locations xstate

control-flow po tfo

data-flow rf, co rfx, cox

legal executions consistency predicate confidentiality predicate

encodes 
software-

visible
executions

encodes 
hardware-

specific
executions

15



LCMs model microarchitectural 
data-flow through xstate
• xstate1: any non-architectural 

state in a microarchitecture

• xstate variables represent 
hardware state elements which:
• facilitate microarchitectural 

data-flow between instructions
• be read from and written to 

by instructions

• Instructions may read 
and/or write xstate 
variable(s)

xstate facilitates microarchitectural dataflow

- -

A+3 ………………

- -

- -

- -

😇

😈

𝑠!

xstate examples

load-store queue

caches
branch predictors

𝑠!
𝑠"
𝑠!
𝑠"
…

Branch address
PHT

TTN N

TTN N

TTN N

TTN N

Target 1

Target 2
Target 3

Target 4

BTB
Direction Prediction

Target Prediction

Selector Table

T T T TN N N N N
GHR

Figure 1. A Combined Branch Predictor

3 Threat Model and Attacker Capabilities
Our attack assumes the existence of a victim and a spy pro-
grams. The victim program contains secret information that
the spy program is trying to infer, without having the au-
thority to access this information directly. The threat model
makes three primary assumptions:

• Co-residency on the same physical core: We assume
that the victim and the spy programs are running on
the same physical core since the BPU is shared at the
virtual core level. Prior work [21] has shown possible
techniques for forcing such co-residency.
• Victim slowdown: To perform a high-resolution Branch-
Scope attack, where we are able to detect the behavior
of an individual execution of a branch, the victim pro-
cess needs to be slowed down. This slowdown is a
common requirement of high-resolution side-channel
attacks [26, 33]. Slowing down the victim is an orthog-
onal issue that can be accomplished by a variety of
means, for example by exploiting the Linux scheduler
as proposed by Gullasch et al. [26] or performing mi-
croarchitectural performance degradation attack [4].
Importantly, in a threat model where a malicious OS
is attacking an SGX compartment, the OS can control
the scheduling at �ne-grain to slow down the victim.
• Triggering victim code execution: We assume that the
attacker can initiate code execution of the victim pro-
cess such that it can force the victim to execute the tar-
geted vulnerable operation at any time. This assump-
tion holds for many applications that are triggered
by external input. For example, consider a server that
sends out encrypted data; the attacker can trigger a
response from this server by sending a request to it.
We do not assume that the attacker can observe the
contents of the response from the victim.

We believe that these three assumptions hold in a large num-
ber of realistic attack scenarios making BranchScope a serious
threat to modern systems, on par with other side-channel
attacks. Later in the paper, we support this claim by demon-
strating BranchScope on a real SGX-based platform.

4 BranchScope Attack Overview
In this section, we present the an overview of BranchScope.
We start with background information and a high-level overview
of the attack, and then move to the details.

In general, the attack proceeds as follows:
• Stage 1: Prime the PHT entry. In this stage, the attacker
process primes a targeted PHT entry into a speci�ed
state. This priming is accomplished by executing a
carefully-selected randomized block of branch instruc-
tions. This block is generated one-time, a-priori by the
attacker.
• Stage 2: Victim execution. Next, the attacker initiates
the execution of a branch it intends to monitor within
the victim process and waits until the PHT state is
changed by the victim’s activity.
• Stage 3: Probe the PHT entry. Finally, the attacker ex-
ecutes more branch instructions targeting the same
PHT entry as the victim while timing them to observe
their prediction outcomes. The attacker correlates the
prediction outcomes with the state of the PHT to iden-
tify the direction of the victim’s branch.

The attacker must be able to cause collisions between
its branches and the branches of the victim process in the
PHT. These collisions, given knowledge of the operation of
the predictor, allow the attacker to uncover the direction of
the victim’s branch. Speci�cally, by observing the impact
of that branch (executed in stage 2 above) on the predic-
tion accuracy of an attacker’s probing branches executed
in stage 3. If the PHT indexing is strictly determined by the
instruction address (as in the 1-level predictor), creating col-
lisions in the PHT between the branches of two processes is
straightforward, since the virtual addresses of victim’s code
are typically not a secret. If address space layout randomiza-
tion (ASLR) is used to randomize code locations, the attacker
can de-randomize using data disclosure [48], or side channel
attacks on ASLR [21, 24, 28, 30, 54].

BranchScope requires the following two abilities:
• Establishing Collisions. The attack relies on gener-
ating collisions within the predictor. Creating colli-
sions is greatly simpli�ed if the predictor in use is the
simply indexed 1-level predictor instead of the more
complex gshare-like predictor. The attack must force
both the attack code and the victim code to use the
1-level predictor.
• Prime Probe Strategy. After the attacker forces a
collision in the PHT, she still needs to be able to in-
terpret the state of the PHT in order to determine the
direction of the victim’s branch. Therefore, we need to
understand how to prime a particular PHT entry into
a desired starting state in stage 1. This starting state
must enable us to correlate some observable behavior
of a probe operation from the attacker in stage 3 with
the direction of the victim’s branch.

Session 8A: Security and Protection ASPLOS’18, March 24–28, 2018, Williamsburg, VA, USA
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𝑠!
𝑠"
𝑠!
…

𝑠#
𝑠$
𝑠!
𝑠"
…

…

hitLD r2, [𝐴!] 𝑠!"

LD r2, [𝐴#] 𝑠#$
"

miss

microarchitectural
data-flow

write

read

We’ll only focus on modeling cache xstate in this presentation.

rfx
“reads-from xstate”
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Image source: Evtyushkin+ SIGPLAN’18

1 The term extra-architectural state was coined in prior 
work [Lowe-Power+ HASP’18]; however, we assign it a 
different meaning in this paper. 



Detecting Leakage in Programs 
with LCMs

High level 
leakage 
definition:

architectural
non-interference

microarchitectural 
non-interference

⟹

Observation: searching for instances of microarchitectural leakage in programs can 
be reduced to searching for violations of three non-interference rules.

else, 
microarchitectural 

leakage

Example rule: rfx non-interference (😇↛😈) holds if for all 
writes 𝒘 and all reads 𝒓,

𝒘 →
"#
𝒓 ⟹ 𝒘 →

"#$
𝒓

Else, there is an interfering transmitter 𝒘# where 𝒘# →
𝒓𝒇𝒙

𝒓
😇 😈

Key idea: apply the standard notion of conditional non-
interference using rf and rfx to represent architectural and 
microarchitectural observations, respectively. 
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rfx non-interference detects 
Spectre v1 leakage

LD r0, [&idx] {s0}

LD r1, [&A_size] {s1}

BR r0 >= r1, end

LD r2, [A+r0] {s2}

LD r3, [B+r2] {s3}

⊤

⊥

tfo

tfo

tfo

tfo

tfo

tfo
rfx

rfx

LD r0, [&idx]

LD r1, [&A_size]

BR r0 >= r1, end

LD r2, [array1+r0]

LD r3, [array2+r2]

⊤

⊥

coxrf
po

po

po

po

Microarchitectural executionArchitectural execution

Transient fetch order (tfo) 
is used to model transient 
execution paths of a program.
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rfx non-interference detects 
Spectre v1 leakage

LD r0, [&idx] {s0}

LD r1, [&A_size] {s1}

BR r0 >= r1, end

LD r2, [A+r0] {s2}

LD r3, [B+r2] {s3}

⊤

⊥

tfo

tfo

tfo

tfo

tfo

tfo
rfx

rfx

LD r0, [&idx]

LD r1, [&A_size]

BR r0 >= r1, end

LD r2, [array1+r0]

LD r3, [array2+r2]

⊤

⊥

coxrf
po

po

po

po

😇

😈

😇

😇

😇

Microarchitectural executionArchitectural execution

rfx non-interference 
violation

Transient fetch order (tfo) 
is used to model transient 
execution paths of a program.
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rfx non-interference detects 
Spectre v1 leakage

LD r0, [&idx] {s0}

LD r1, [&A_size] {s1}

BR r0 >= r1, end

LD r2, [A+r0] {s2}

LD r3, [B+r2] {s3}

⊤

⊥

tfo

tfo

tfo

tfo

tfo

tfo
rfx

rfx

Microarchitectural execution

LD r0, [&idx]

LD r1, [&A_size]

BR r0 >= r1, end

LD r2, [array1+r0]

LD r3, [array2+r2]

⊤

⊥

coxrf
po

po

po

po

😇

😈

😇

😇

😇

Architectural execution

rfx non-interference 
violation

Transient fetch order (tfo) 
is used to model transient 
execution paths of a program.
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A taxonomy for classifying 
transmitters by severity

microarchitectural execution

int victim_function(int idx) {
// index out-of-bounds
if (idx < A_size) {
uint8_t secret = A[idx];
return        B[secret];

}
return 0;

}

⊤

⊥

tfo

tfo

tfo

tfo

tfo

tfo
LD r0, [&idx] {s0}

LD r1, [&A_size] {s1}

BR r0 >= r1, end

LD r2, [A+r0] {s2}

LD r3, [B+r2] {s3}

addr

addr

address transmitter (!)

address transmitter (!)

Spectre v1 leaks 
arbitrary data in memory

addr

addr

(!!!)

😈

😇

address
transmitter receiver

😈😇
rfx

😇

😇

😇

(!)address transmitter (!) 0 addr

data transmitter (!!) 1 addr

universal data transmitter (!!!) 2 addr

Taxonomy

21

address transmitter (!)

address transmitter (!)



A taxonomy for classifying 
transmitters by severity

microarchitectural execution

int victim_function(int idx) {
// index out-of-bounds
if (idx < A_size) {
uint8_t secret = A[idx];
return        B[secret];

}
return 0;

}

⊤

⊥

tfo

tfo

tfo

tfo

tfo

tfo
LD r0, [&idx] {s0}

LD r1, [&A_size] {s1}

BR r0 >= r1, end

LD r2, [A+r0] {s2}

LD r3, [B+r2] {s3}

addr

addr

data transmitter (!!)

address transmitter (!)

address transmitter (!)

Spectre v1 leaks 
arbitrary data in memory

addr

addr

(!!!)

😈

😇

secret 
access

🎯
addr

data
transmitter receiver

😈😇
rfx

😇+🎯

(!)(!!)address transmitter (!) 0 addr

data transmitter (!!) 1 addr

universal data transmitter (!!!) 2 addr

Taxonomy

22
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data transmitter (!!)



A taxonomy for classifying 
transmitters by severity

microarchitectural execution

int victim_function(int idx) {
// index out-of-bounds
if (idx < A_size) {
uint8_t secret = A[idx];
return        B[secret];

}
return 0;

}

⊤

⊥

tfo

tfo

tfo

tfo

tfo

tfo
LD r0, [&idx] {s0}

LD r1, [&A_size] {s1}

BR r0 >= r1, end

LD r2, [A+r0] {s2}

LD r3, [B+r2] {s3}

addr

addr

universal data transmitter (!!!)

data transmitter (!!)

address transmitter (!)

address transmitter (!)

Spectre v1 leaks 
arbitrary data in memory

addr

addr

(!!!)

😈

🎯

🏹

attacker
index

🏹
addr

secret 
access

🎯
addr

universal data
transmitter

receiver

😈😇
rfx

😇

(!)(!!)(!!!)address transmitter (!) 0 addr

data transmitter (!!) 1 addr

universal data transmitter (!!!) 2 addr

Taxonomy
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Roadmap

• Background: Memory Consistency Models (MCMs)

• Leakage Containment Models (LCMs): Modeling Microarchitectural Leakage

• Clou: Detecting and Mitigating Microarchitectural Leakage in Programs
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Clou: detecting and and mitigating 
speculative leakage with LCMs

{}
source

symbolic 
abstract event 

graph

leakage 
detection 

engine

LLVM-IR

clang

SMT solver

configuration 
parameters witness 

executions

set of 
transmitters

fence 
insertion

repaired 
LLVM-IR executable

hard-coded
LCM

single-core, speculative, 
out-of-order, cache, 

ROB, LSQ
25



Clou is fast, scalable, and has found 
bugs in real-world code
• Detects all leakage in benchmarks: 

PHT, STL, FWD, NEW

• More scalable than previous tools:
• Binsec/Haunted [Daniel+ NDSS21]
• Pitchfork [Cauligi+ PLDI20])

• Reported 7 new Spectre v4 
vulnerabilities in Libsodium

• Reported 5 new Spectre v1 
vulnerabilities in OpenSSL

Benchmarks BH runtime (s) Clou runtime (s)
PHT 20.9 2.8
STL 6.1 4.3

FWD 589.3 4.1
NEW 32.5 1.0
tea 18.8 1.14

donna TO 112052
secretbox TO 1008
ssl3-digest TO 1318
mee-cbc TO 95900

Crypto library % Functions analyzed % LOC analyzed
libsodium API 100% 100%

OpenSSL API 90% / 81% 58% / 60%

Runtimes (universal data leakage)

Crypto-library Analysis (universal data leakage)
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LCMs: Additional Topics*

• Universal control transmitters and control transmitters
• Full non-interference definition
• LCMs capture leakage on behalf of Spectre v4, Spectre-PSF, Indirect 

Memory Prefetchers, Silent Stores
• fr, frx relations

• Clou optimizations
• Subrosa toolkit for formal LCM development and analyses

*Nicholas Mosier, Hanna Lachnitt, Hamed Nemati, and Caroline Trippel. “Axiomatic Hardware-Software Contracts for Security”. ISCA 2022.
27



Key Takeaways
• Microarchitectural data- and control-flow are key building blocks of microarchitectural 

leakage

• LCMs support reasoning about the security implications of hardware on software with a 
leakage definition based on conditional non-interference

• LCMs support classifying transmitters according to leakage scope/severity

• Clou discovered 7 new Spectre v4 vulnerabilities in libsodium

• Clou discovered 5 new Spectre v1 vulnerabilities in OpenSSL, confirmed by developers:
https://www.openssl.org/blog/blog/2022/05/13/spectre-meltdown/

Nicholas Mosier, Hanna Lachnitt, Hamed 
Nemati, and Caroline Trippel. 2022. Axiomatic 
Hardware-Software Contracts for Security. In The 
49th Annual International Symposium on Computer 
Architecture (ISCA ’22). https: 
//doi.org/10.1145/3470496.3527412

Title:  “Axiomatic Hardware-Software Contracts For Security”
GitHub: nmosier/clou, nmosier/clou-bugs, ctrippel/subrosa
Email: nmosier@stanford.edu

28
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Appendix Table of Contents
• Clou: OpenSSL Vulnerability
• Prior Security Contract Proposals
• Modeling AES Side-Channel Leakage
• Modeling Other Optimizations with LCMs
• Clou: Results and Runtimes
• Non-Interference / Microarchitectural Leakage Definitions
• Microarchitectural Control-Flow Semantics
• Microarchitectural Data-Flow Semantics
• Clou: Additional Topics
• Clou: New Type of Leakage
• Axiomatic MCMs Ecosystem
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Clou: OpenSSL Vulnerability

int SSL_get_shared_sigalgs(SSL *s, int idx,
int *psign, int *phash, int *psignhash,
unsigned char *rsig, unsigned char *rhash)

{
const SIGALG_LOOKUP *shsigalgs;
if (s->shared_sigalgs == NULL

|| idx < 0
|| idx >= (int)s->shared_sigalgslen
|| s->shared_sigalgslen > INT_MAX)
return 0;

shsigalgs = s->shared_sigalgs[idx];
if (phash != NULL)

*phash = shsigalgs->hash;
...

} 😈

😇

⊥
rfx

⊤

rf

// branch misprediction

// secret accessed

// secret leaked to cache
addr

addr

🎯
🏹
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Clou: libsodium Vulnerabililty
static int
_sodium_base642bin_skip_padding(const char * const b64, const size_t b64_len,

size_t * const b64_pos_p,
const char * const ignore, size_t padding_len)

{
int c;

while (padding_len > 0) {
if (*b64_pos_p >= b64_len) {

errno = ERANGE;
return -1;

}
c = b64[*b64_pos_p]; // <<< speculative store bypass
if (c == '=') {

padding_len--;
} else if (ignore == NULL || strchr(ignore, c) == NULL) {

errno = EINVAL;
return -1;

}
(*b64_pos_p)++;

}
return 0;

}
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Prior Security Contract Proposals

Proposed Contracts
Requires 
hardware 

enhancements

Restrict scope of 
hardware features

Solely expose 
transient leakage

Based on operational 
models

Cheang+ IEEE CSF19 X X X

Disselkoen+ IEEE S&P19 X X

Mcilroy+ ARXIV19 X X X

Yu+ NDSS19 X X

Zagieboylo+ CSF19 X X

Guarnieri+ IEEE S&P20 X X X

Vassena+ ACM PL21 X X X

Mosier+ ISCA22 X
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Modeling AES Side-Channel Leakage

LD  r0, [&Si]
LD  r2, [T4 + r1]
LD  r3, [K10]
XOR r4, r2, r3
ST  r4, [& 𝑆𝑖!]

𝑆𝑖! <- K10 ⨁ T4[𝑆"]

Si : ith byte of state after 
first 9 rounds (secret)

Pseudo-code

Assembly

LD  r1, [&Si]

LD  r2, [T4 + r1]

LD  r3, [&K10]

XOR r4, r2, r3

ST  r4, [& 𝑆𝑖!]

⊤

⊥

po

po

po

po

tfo

tfo

tfo

tfo

addr

data

rfx

rf

po tfo

po tfo

😈

😇

🎯

3 address transmitters – benign
1 data transmitter – leaks secret! 34



Modeling Other Optimizations with LCMs
• Microarchitectural control-flow

• Speculative store bypass (Spectre v4)
• Indirect branch prediction (Spectre v2)
• Predictive store forwarding (Spectre PSF)

• Microarchitectural data-flow
• Prefetching

• Indirect Memory Prefetcher [Yu+ MICRO’15]
• Branch predictor 

• Pattern History Table [Evtyushkin+ 
ASPLOS’18]

• Branch Target Buffer
• Micro-op cache [Ren+ ISCA’21]
• Port contention 

• AVX
• Silent stores [Lepak+ ISCA’00]

Silent Store

Spectre v4

Indirect Memory Prefetcher

35



Clou Results

Serial CPU runtime vs. function size for Clou’s libsodium analysis 
(no functions time out)

36

Clou’s performance on various crypto 
benchmarks and libraries



Non-interference

Definition 1: Non-interference. Given a state machine M, and its subjects 
S and S’, we say that S does not interfere with (or is non-
interfering with) S’, if the actions S on M do not affect the 
observations of S’.

ST [x], r2

LD r1, [x]

...

reads-from (rf)
relates storeàload if load 

reads from store

x = 0;
... = x;

rf

Memory-related non-interference:
• subjects S and S’ can perform actions {R loc, 

W loc},
• the only shared memory locations 

between S and S’ are read-only (RO), and
• subjects make architectural observations 

through rf edges involving actions.
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Microarchitectural Leakage

Definition 2:  Architectural non-interference (ArchNI). S is architecturally 
non-interfering with S’ if the actions of S do not affect the 
placement of rf edges involving the actions of S’.

Definition 3. Microarchitectural leakage. S does not exhibit 
microarchitectural leakage with respect to S’ if:

ArchNI(S, S’) → μArchNI(S, S’) We need: a way to define 
microarchitectural non-interference 
(μArchNI) so that we can define and 
reason about microarchitectural leakage.

38



Microarchitectural control-flow 
semantics model transient execution

microarchitectural control-flow

Encodes the transient and non-transient instruction stream.

tfo

non-transient
(same as po)

transient
(diverges from po)

BR cc, L1, L2

L1

tfo

L2 L2

tfo
BR cc, L1, L2

L1

if (cc) L1 else L2

BR cc, L1, L2

L1

tfo

L2 L2

tfo
BR cc, L1, L2

L1

po

tfo tfo

po

transient execution

legend
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Microarchitectural data-flow semantics 
model information flow through xstate

LD r1, [A] 𝑠!$
"

ST r1, [A] 𝑠!$
"

...
LD r1, [A] 𝑠"#

$

ST r1, [A] 𝑠"#
$

...

microarchitectural data-flow

Encodes dynamic data-flow through xstate.

rfx, cox, frx

xstate reads-from (rfx)
relates an xstate write to an 
xstate read that it sources

... = x;
x = ...;

fr

xstate coherence order (cox)
constructs a total order on same-

xstate writes

fr

... = x;
x = ...;

rfx

cox

rfx

cox

A confidentiality predicate constrains the legal placement of tfo, rfx, cox edges.
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Revisiting Microarchitectural Leakage

Definition 2:  Architectural non-interference (ArchNI). S is architecturally 
non-interfering with S’ if the actions of S do not affect the 
placement of rf edges involving the actions of S’.
Definition 3: Microarchitectural non-interference (μArchNI). S is 
microarchitecturally non-interfering with S’ if the actions of S 
do not affect the placement of rfx edges involving the actions 
of S’.

Memory-related non-interference:
• subjects S and S’ can perform actions {R loc (RW xs), R loc (R xs), W loc (RW xs)},
• the only shared memory locations between S and S’ are read-only (RO), 
• subjects make architectural observations through rf edges involving actions, and
• subjects make microarchitectural observations through rfx edges involving actions
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Clou: Additional Topics

• Optimizations for detecting universal data leakage: sliding window, 
partial executions, lazy S-AEG construction, addr_gep edges

• Parametrizable by dimensions of microarchitectural structures: reorder 
buffer size, load-store queue size

• Program abstraction techniques: function inlining, alias analysis, loop 
summarization

• Soundness and completeness guarantees and limitations: unchecked 
pointers assumption, external function calls, unsound aliasing, unsound 
control-flow, inline assembly, data dependency limit

42



Clou discovered new types of leakage

• New Spectre v1.1 variant: 
int *ptr = …;
if (x < A_size)
A[x] += secret;

*ptr = 0;

• Combination of Spectre v1.1 
+ Spectre v4
int *p = …;
*p = secret;
A[x] = 0;

43

• New speculative 
interference attack variant:
int idx = …;
int **A_size = …;
if (idx < **A_size) {
// prefetches **A_size
… = A[idx]; 

}



Axiomatic MCMs have spawned an 
ecosystem of tools and research

weak 
MCM

automatic fence 
insertion 

Weak MCM

sequential consistency

strong 
MCM

MCM

verified compiler 
mappings

x86-TSO, Power,
Armv7, Armv8,
RVWMO, RVTSO,
NVIDIA PTX

Java, C11, OpenCL

ISA 
MCM

verified 
microarchitectural
implementation

SC, TSO, ARM 
memory model

microarchitecture

https://check.cs.princeton.edu/

Ongoing 
work!
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Deriving LCMs from MCMs gives 
us access to similar techniques!


