Axiomatic Hardware=-Software
Contracts for Security

Nicholas Mosier!, Hanna Lachnitt!, Hamed Nemati'2, Caroline Trippel'

49th International Symposium on Computer Architecture — ISCA 2022

‘Stanford s

University

)
=

/ y = 3%
f | M\
'l e

\"Ijs,,

A\

CISPA

HELMHOLTZ CENTER FOR
INFORMATION SECURITY

Hardware underpins software security

If one considers the union of all optimizations
on this slide, no instruction
operand/result or data at rest is safe

[Vicarte+, ISCA’21].

Subnormal floating point DRAM

[Andrysco+, S&P ‘1 5]

Indirect memory prefetchers
[Vicarte+, ISCA “21]

b 0 3 ister-fi i
sV,) Register-file compression

[Google Project Zero ‘15]

Caches
[Osvik+, CT-RSA ’06]
[Yarom+, USENIX ’14]

Coherence
[Guanciale+, Oakland ‘16]

[Vicarte+, ISCA “21]

Division early exit
[Coppens, S&P ‘09]

)

Digit-serial multiplication 000 Execution

[GroBschad+, ISISC ‘09]

[Lipp+, USENIX ‘18]

[Tsai+, ISCA 20]

Compressed Caches

Silent stores
[Vicarte+, ISCA 21]

IR

Speculation
[Kocher+, S&P ‘19]

Value prediction
[Vicarte+, ISCA 2]

Computation reuse
[Vicarte+, ISCA “21]

Hardware underpins software security
[eee

— memory models - — = hardware-software contracts — — - security contracts — — -

¥

Roadmap

* Leakage Containment Models (LCMs): Modeling Microarchitectural Leakage
* Clou: Detecting and Mitigating Microarchitectural Leakage in Programs

>

>

\,

" Axiomatic Memory)

Consistency Model

J

00
00

MCMs:
* Define the legal ordering + visibility of shared
memory accesses
Axiomatic MCMs:
* Model architectural executions of a program
as directed graphs
* Nodes: instructions
* Directed edges: happens-before relations
* Consistency predicate defines legal executions

Used by LCMs to
define software-
visible execution
behaviors of a
program

Execution Graph

O instruction
O control-flow
>

data-flow

Architectural Executions

forbidden

Consistency
Predicate

Modeling program executions axiomatically with

control- and data-flow happens-before relations

A; B; if (cc) LI else L2
control-flow A BR cc, L1, L2 BR cc, L1, L2
- Or -
Encodes branch outcomes. B 1 L2
data-flow dependencies

Encodes dynamic data-flow through memory.

x=0;
[X N] =x;

ST [x1, ©

LD r1, [x]

reads-from (rf)
relates store—>load if load
reads from store

Xx=0;
Xx=1;
ST [x1, ©

ST [xI, 1

coherence order (co)
constructs a total order on
same-address stores

Encodes syntactic data-flow through registers.

Used later on
for classifying
leakage by
severity

.. = A[x]

LD r1, [x]

LD/ST r2, [A + ri]

address dependency (addr):
relates load—>access where accesses
uses load in address computation

Roadmap

* Background: Memory Consistency Models (MCMs)

* Clou: Detecting and Mitigating Microarchitectural Leakage in Programs

Microarchitectural data-flow enables leakage

Program | Program 2

y = Alx];| z = A[3];

Cache Ingredients for modeling
y = A [3] Address Data

: . |. Instructions exhibit

z = A[3] 2. Which execution is realized

Microarchitectural data-flow enables leakage

Program | Program 2

y = Alx];| z = A[3];

transmitter Cache Ingredients for modeling

Ty = A[3] xm‘ Address Data
A+3 | |. Instructions exhibit
/ : :
wz = A[3] 2. Which execution is realized

receiver

cache hit (5 ns)

leaks: x = 3

Microarchitectural data-flow enables leakage

Cache

Address

Data

Program | Program 2
y = Alx]; | z = A[3];
transmitter Cache
oy = A[3] xm‘ Address Data
A+3 | y = A[5]
/ : :
wz = A[3] . - z = A[3]

receiver

cache hit (5 ns)

leaks: x = 3

Microarchitectural data-flow enables leakage

transmitter

Program |

y = Alx];

Cache

Address

Data

A+3

/
wz = A[3]

receiver

cache hit (5 ns)

leaks: x = 3

Program 2
z = A[3];
transmitter
oI
y = A[5]
@z = A[3]
receiver

cache miss (50 ns)

write

read

leaks: x # 3

Cache
Address Data
A+5 |

Microarchitectural control flow increases
leakage scope

Spectre vi: Bounds Check Bypass

// 1idx out-of-bounds
2 if (idx < A _size) { mispredicted branch

3: char secret = Alidx];
4 tmp = Blsecret];

}

Modern hardware predicts branch outcomes and speculatively executes instructions along predicted paths.

Microarchitectural control flow increases
leakage scope

Cache Spectre vi: Bounds Check Bypass
Address Data

- - // 1dx out-of-bounds

_ - 2 if (idx < A _size) { mispredicted branch
- - 3:

- - 4: j

N _ Iy

array B

- - void attacker() {

- -) x = B[0O];
_ _ rea X = B[l];
x = B[42]; ,
1 © Cache hit! Leaks secret = 42

Modern hardware predicts branch outcomes and speculatively executes instructions along predicted paths.

MCMs lay the foundation for LCMs but fall short
for modeling microarchitectural leakage

T

JPe
LD r@, [idx]

pe

LD r1, [A_sizel

if (idx < A _size) A lpo
char secret = A[idx]; applying MCM axioms BR r0 >= r1, end
tmp = Blsecretl];

¥

transmitter
po =

>~/

19

receiver

LCMs

MCMs do not capture microarchitectural control-flow or microarchitectural data-flow
... but they tell us how to construct a model that does!

Deriving a microarchitectural
semantics from architectural MCMs

MCMs / LCMs LCMs Microarch.

Arch. Semantics Semantics
abstraction level architecture microarchitecture
communication medium memory locations xstate
control-flow po tfo
data-flow rf, co rfx, cox
legal executions consistency predicate | confidentiality predicate

encodes encodes
software- hardware-
visible specific

executions executions

LCMs model microarchitectural
data-flow through xstate

° xstate|: any non-architectu ra' xstate facilitates microarchitectural dataflow
state in a microarchitecture < write

* xstate variables represent
hardware state elements which:

e facilitate microarchitectural
data-flow between instructions

 be read from and written to
by instructions

\

read _ _
(5]

xstate examples

LD I"2, [Ao] {SOR }\

BTB Selector Table

0 12, [Ay] (s |l

* Instructions may read
and/or write xstate

Target 3

(%]
E

variable(s)

Image source: Evtyushkin+ SIGPLAN’18 load-store queue

'The term extra-architectural state was coined in prior

work [Lowe-Power+ HASP’18]; however, we assign it a ;
different meaning in this paper. We'll only focus on modeling cache xstate in this presentation.

Detecting Leakage in Programs
With LC M s Key idea: apply the standard notion of conditional non-

interference using rf and rfx to represent architectural and
microarchitectural observations, respectively.

High level : : : else,
architectural microarchitectural) .
leakage , = , microarchitectural
. . non-interference non-interference
definition: leakage

Observation: searching for instances of microarchitectural leakage in programs can
be reduced to searching for violations of three non-interference rules.

Example rule: non-interference (Qv)+>@) holds if for all
writes w and all reads 7,

Wor=w-r
© 9
r

Else, there is an interfering transmitter w' where w'

rfx non-interference detects

Spectre vl leakage

Architectural execution

T

LD ro, [&idx]
LD r1, [&A_sizel

BR ro >= r1, end

Microarchitectural execution

T
LD ro, [&idx] {s@}
LD r1, [&A_size] {s1}
BR ro >= r1, end

LD r2, [A+r0@] {s2}

LD r3, [B+r2] {s3}

1

Transient fetch order (tfo)
is used to model transient
execution paths of a program.

rfx non-interference detects
Spectre vl leakage

Architectural execution

T

Microarchitectural execution

T

LD r@, [&idx]

P .
)LD ro, [&idx] {s0}
LD r1, [&A_size]

rfx non-interference

[.
)LD r1, [&A_size] {sl}

violation
BR ro >= r1, end

re >= rl, end

(o]}

Transient fetch order (tfo)
is used to model transient
execution paths of a program.

rfx non-interference detects
Spectre vl leakage

Architectural execution

T

Microarchitectural execution

T

LD r@, [&idx]

P .
)LD ro, [&idx] {s0}
LD r1, [&A_size]

rfx non-interference

[.
)LD r1, [&A_size] {sl}

violation
BR ro >= r1, end

re >= rl, end

(o]}

Transient fetch order (tfo)
is used to model transient
execution paths of a program.

A taxonomy for classifying
transmitters by severity

Spectre vl leaks
arbitrary data in memory

int victim_function(int idx)
// index out-of-bounds
if (idx < A_size) {
uint8_t secret = A[idx];
return B[secret];

}

return 0;

Taxonomy

{

address transmitter

0 addr

data transmitter

| addr

universal data transmitter

2 addr

microarchitectural execution

1_
ltfo

LD ro, [&idx] {s0}
ltfo

LD r1, [&A_size]l {s1}
jtro

BR r@ >= r1, end
ltfo

LD r2, [A+r@] {s2}
*LIU
LD r3, [B+r2] {s3}

ltTo
@J_

address transmitter

address transmitter

address transmitter

address transmitter

AA

<
address
transmitter

o

receiver

A taxonomy for classifying

transmitters by severity

Spectre vl leaks
arbitrary data in memory

int victim_function(int idx) {
// index out-of-bounds
if (idx < A_size) {
uint8_t secret = A[idx];

return B[secret];

}

return 0;
}

Taxonomy

address transmitter 0 addr
data transmitter | addr
universal data transmitter 2 addr

microarchitectural execution

|
ltfo
LD ro, [&idx] {s0}
ltfo
" LD r1, [&A_size] {s1}
ltfo
BR r@ >= r1, end
] tfo
= A '
C+@ | b r2, [A+reo] {s2}
itTO
P —
) LD r3, [B+r2] {s3}

1tTO
@J_

address transmitter

address transmitter

data transmitter

data transmitter

s =
data
transmitter

secret
access

receiver

A taxonomy for classifying
transmitters by severity

Spectre vl leaks microarchitectural execution
arbitrary data in memory T
ltfo
. |] .
int victim_function(int idx) { % LD ro, [&idx] {s0} address transmitter
// index out-of-bounds * Jtfo
if (.1dx = Asize) A LD r1, [&A_size] {sl} address transmitter
uint8_t secret = A[idx]; Jtfo
return B[secret]; BR ro 1>t=f rl, end
0]
; @"‘ LD r2, [A+r@] {s2} data transmitter
return 0; Jtfo
¥ = : .
&) ,|LD r3, [B+r2] {s3} universal data transmitter
Taxonomy 1tTo
address transmitter 0 addr @ 1
i % £ &3
data transmitter | addr % </ @
universal data transmitter 2 addr attacker secret universal data | .cqjyer
index access transmitter

Roadmap

* Background: Memory Consistency Models (MCMs)
* Leakage Containment Models (LCMs): Modeling Microarchitectural Leakage

Clou: detecting and and mitigating
speculative leakage with LCMs

— D1 LLVM-R

clang

.IIIIIIIIIIIIIIIIIIIIIIIII.
= single-core, speculative, =
out-of-order, cache, =

ROB, LSQ

configuration
parameters

symbolic
abstract event
graph

‘I
lﬂl‘\’s

hard-coded
LCM

withess
executions

leakage . fenc.e —_—
detection Insertion

engine

set of
transmitters
SMT solver

repaired
LLVM-IR

Clou is fast, scalable, and has found
bugs in real-world code

* Detects all leakage in benchmarks:
PHT, STL, FWD, NEW

* More scalable than previous tools:

* Binsec/Haunted [Daniel+ NDSS21]
* Pitchfork [Cauligi+ PLDI20])

* Reported 7 new Spectre v4
vulnerabilities in Libsodium

* Reported 5 new Spectre vi
vulnerabilities in OpenSSL

Runtimes (universal data leakage)

Benchmarks BH runtime (s) Clou runtime (s)

PHT 20.9 2.8
STL 6.1 4.3
FWD 589.3 4.1
NEW 32.5 1.0
tea 18.8 .14
donna TO 112052
secretbox TO 1008
ssi3-digest TO 1318
mee-cbc TO 95900

Crypto-library Analysis (universal data leakage)

Crypto library % Functions analyzed % LOC analyzed |
libsodium API 100% 100%

OpenSSL API 90% / 81% 58% / 60%

LCMs: Additional Topics*

 Universal control transmitters and control transmitters
* Full non-interference definition

* LCMs capture leakage on behalf of Spectre v4, Spectre-PSF, Indirect
Memory Prefetchers, Silent Stores

* fr, frx relations
* Clou optimizations
* Subrosa toolkit for formal LCM development and analyses

*Nicholas Mosier, Hanna Lachnitt, Homed Nemati, and Caroline Trippel. “Axiomatic Hardware-Software Contracts for Security”. ISCA 2022.

Key Takeaways

Microarchitectural data- and control-flow are key building blocks of microarchitectural

leakage

LCMs support reasoning about the security implications of hardware on software with a
leakage definition based on conditional non-interference

LCMs support classifying transmitters according to leakage scope/severity

Clou discovered 7 new Spectre v4 vulnerabilities in libsodium

Clou discovered 5 new Spectre vl vulnerabilities in OpenSSL, confirmed by developers:
https://www.openssl.org/blog/blog/2022/05/1 3/spectre-meltdown/

Title: “Axiomatic Hardware-Software Contracts For Security”
GitHub: nmosier/clou, nmosier/clou-bugs, ctrippel/subrosa
Email: nmosier@stanford.edu

Nicholas Mosier, Hanna Lachnitt, Hamed
Nemati, and Caroline Trippel. 2022. Axiomatic
Hardware-Software Contracts for Security. In The
49th Annual International Symposium on Computer
Architecture (ISCA ’22). https:

//doi.org/10.1145/3470496.3527412
28

https://www.openssl.org/blog/blog/2022/05/13/spectre-meltdown/
mailto:nmosier@stanford.edu

29

Appendix Table of Contents

Clou: OpenSSL Vulnerability

Prior Security Contract Proposals
Modeling AES Side-Channel Leakage
Modeling Other Optimizations with LCMs
Clou: Results and Runtimes
Non-Interference / Microarchitectural Leakage Definitions
Microarchitectural Control-Flow Semantics
Microarchitectural Data-Flow Semantics
Clou: Additional Topics

* Clou: New Type of Leakage

* Axiomatic MCMs Ecosystem

30

Clou: OpenSSL Vuilnerability
T

int SSL_get_shared_sigalgs(SSL *s, int idx,
int *psign, int *phash, int *xpsignhash,

unsigned char *rsig, unsigned char xrhash)

const SIGALG_LOOKUP *shsigalgs;
if (s—>shared_sigalgs == NULL

|| idx < ©
|| idx >= (int)s->shared_sigalgslen

|| s—>shared_sigalgslen > INT_MAX)

return 0;
shsigalgs = s—>shared_sigalgs[idx];

if (phash !'= NULL)
*phash = shsigalgs—>hash;

s
1

@ QY

o

Clou: libsodium Vulilnerabililty

static int

_sodium_base642bin_skip_padding(const char * const b64, const size_t b64_len,
size_t * const b64_pos_p,
const char * const ignore, size_t padding_len)

int c;
while (padding_len > 0) {

if (*b64_pos_p >= b64_len) {
errno = ERANGE;

return -1;
}
c = b64[*b64_pos_p]; // <<< speculative store bypass
if (c == '=") {

padding_len--;
} else if (ignore == NULL || strchr(ignore, c) == NULL) {
errno = EINVAL;

return -1;
}
(*b64_pos_p)++;
}
return 0;

Prior Security Contract Proposals

Cheang+ IEEE CSF19 X X X
Disselkoen+ |IEEE S&P19 X X
Mcilroy+ ARXIVI9 X X X
Yu+ NDSS19 X X
Zagieboylo+ CSFI9 X X
Guarnieri+ |EEE S&P20 X X X
Vassenat+ ACM PL2| X X X

Mosier+ ISCA22 X

Modeling AES Side-Channel Leakage

plaintext

l

Ko —| AddRoundKey |

A

y

-

\
<
<

SubBytes
v

To, T1.) (

T, Ts |\ Shiftli{ows

-

\L M|xC2Iumns J)

K: s—| AddRoundKey |

SubBytes
T4) v
ShiftRows
Kio— AddRoundKey |

S; :ith byte of state after
first 9 rounds (secret)

Pseudo-code LD
S <= Kig @ T4l[S;]

LD
Assembly LD
LD ro, [&S;]
LD r2, [T4 + r1]
LD r3, [Kipl XOR
XOR r4, r2, r3
ST r4, [&S/] ST

3 address transmitters — benign
| data transmitter — leaks secret!

——

T
r1, [&S;]©

r2, [T4 + r1]§3;

r3, [&Kigl

rd, r2, r3

r4, [&S']
1

Es’ 34

Modeling Other Optimizations with LCMs

* Microarchitectural control-flow
* Speculative store bypass (Spectre v4)
* Indirect branch prediction (Spectre v2)
* Predictive store forwarding (Spectre PSF)

Spectre v4

T
po,tfol, &A

1: R size (RW sg) — rl

e Microarchitectural data-flow zzR";”g‘;isl)w

* Prefetching po.tfol
* Indirect Memory Prefetcher [Yu+ MICRO’| 5] BWy ®W sy e r &0

rf,

* Branch predictor 45:R5t;0(tsl)_>r3
* Pattern History Table [Evtyushkin+ tfoy .~ addr
ASPLOS’ 18] 5s:Rs AthZiRWLSz)/:;::
* Branch Target Buffer 65: Rg B+rd (RW s3) — 15
* Micro-op cache [Ren+ I[SCA’21] tfoi
* Port contention 2
« AVX

Silent stores [Lepak+ ISCA’00]

Silent Store

, o/ T
o, po,tfol, W’
|
\co 1:Wx(s1) « 1

N ll po,tfoy
» 2:Wx(sl) «1
po,tfol,
1

“rf

Indirect Memory Prefetcher

T
tfo¢
1p:Rp Z (s1) > rl

tfo¢ Adr

2p:Rp Y (s2) «r2

tf0¢ Adr

3p:Rp X (s3) « 13
tfo»l«
1

“rf

Clou Results

App. Tool Time (s) Bugs
(PFun/Fun/LoC) (DT/CT/UDT/UCT)|(DT/CT/UDT/UCT)
Crou-pHT| 3252.8/3670 0/0
donna Crou-sTL!| 27683/21853 514(0)/0
(1/21/874) BH-PHT 3600 0
BH-STL 3600 15
CLou-PHT| 495.8/495.2 0/0
secretbox CrLou-sTL| 512.0/507.2 0/0
(1/12/142) BH-PHT 2611.4 17
BH-STL 21600 26
CLouU-PHT 80.7/90.8 0/0
ssl13-digest |Crou-sTL| 1237.8/7989.8 98(0)/53(0)
(1/23/1563) BH-PHT 4375 13
BH-STL 21600 1
CLou-PHT [443735/595650| 7(0)/85(0)
mee-cbc CLOU-STL | 47606/646215 17(0)/6(0)
(1/6/1157) BH-PHT 21600 17
BH-STL 21600 2
libsodium CLOU-PHT 995/1078 7(0)/20(0)
(646/733/7078) |CLouU-STL2| 49453.6/13046 | 1266(1)/275(89)
OpenSSL CrLou-pHT| 171997/- 755(60)/—
(3307/5408/161552)| CLou-sTL | 779209/- | 11531(3383)/-

Clou’s performance on various crypto
benchmarks and libraries

runtime (s)

10,000 T T T T - \:\\
1,000 e ”
100 [Y. L e . - |
10 o ot - ®
1 s o -. ‘o " 00‘ ‘ : ° x
o ¥ 00 ° s
0.1 | | 4 | 23 I « CLou-PHT | |
0.01 c . .-n' o °
0.001 |I-= T T . CLoU-STL
[[| [L1 | mmmn
10 100 1,000 10,000 100,000

S-AEG function size (node count)

Serial CPU runtime vs. function size for Clou’s libsodium analysis
(no functions time out)

36

Non-interference

Definition |: Non-interference. Given a state machine M, and its subjects
S and S’, we say that S does not interfere with (or is non-
interfering with) S’ if the actions S on M do not affect the
observations of S'.

X =0;
Memory-related non-interference: e =X,
* subjects S and S’ can perform actions {R loc, ST [x], r2
W loc},
* the only shared memory locations LD r1, [x]

between S and S’ are read-only (RO), and oot
» subjects make architectural observations reads-from (rf)
. _] relates store—>load if load
through rf edges involving actions. reads from store

Microarchitectural Leakage

Definition 2: Architectural non-interference (ArchNI).S is architecturally
non-interfering with S’ if the actions of S do not affect the
placement of rf edges involving the actions of S’.

Definition 3. Microarchitectural leakage. S does not exhibit
microarchitectural leakage with respect to §’ if:

AI"Cth(S, S’) — U.AI"Cth(S, S’) We need: a way to define

microarchitectural non-interference
(rArchNl) so that we can define and
reason about microarchitectural leakage.

Microarchitectural control-flow
semantics model transient execution

microarchitectural control-flow
Encodes the transient and non-transient instruction stream.

if (cc) L1 else L2

. BR cc, L1, L2 BR cc, L1, L2
non-transient
(same as po)
L1 L2 L1 L2
BR cc, L1, L2 BR cc, L1, L2

transient
(diverges from po) L1 L2 L1 L2

legend

Microarchitectural data-flow semantics
model information flow through xstate

microarchitectural data-flow

Encodes dynamic data-flow through xstate.

[N] = x; [X N] = x;

x = I.l; X = II.;
LD rl, [A] {S(MP/} LD rl’ [A] {5(;/1
R 2.

ST I"l, [A] {SUW} ST ri, [A] {S(w.
xstate reads-from (rfx) xstate coherence order (cox)
relates an xstate write to an constructs a total order on same-

xstate read that it sources xstate writes

A confidentiality predicate constrains the legal placement of tfo, rfx, cox edges.

Revisiting Microarchitectural Leakage

Definition 2: Architectural non-interference (ArchNI).S is architecturally
non-interfering with S’ if the actions of S do not affect the
placement of rf edges involving the actions of S’.

Definition 3: Microarchitectural non-interference (uArchNI). S is
microarchitecturally non-interfering with S’ if the actions of S

do not affect the placement of rfx edges involving the actions
of S’

Memory-related non-interference:

* subjects S and §’ can perform actions {R loc (RW xs), R loc (R xs), W loc (RW xs)},
* the only shared memory locations between S and S’ are read-only (RO),

* subjects make architectural observations through rf edges involving actions, and

* subjects make microarchitectural observations through rfx edges involving actions

C Llou: Additional Topics

Optimizations for detecting universal data leakage: sliding window,
partial executions, lazy S-AEG construction, addr_gep edges

Parametrizable by dimensions of microarchitectural structures: reorder
buffer size, load-store queue size

Program abstraction techniques: function inlining, alias analysis, loop
summarization

Soundness and completeness guarantees and limitations: unchecked
pointers assumption, external function calls, unsound aliasing, unsound
control-flow, inline assembly, data dependency limit

Clou discovered new types of leakage

* New Spectre vli.I variant:
int *ptr = ..;
if (x < A_size)
A[x] += secret;
*ptr = 0;

* New speculative
interference attack variant:
int idx = ..;
int **A_size = ..;
if (idx < **A_size) {

// prefetches **A_size

.. = Alidx];

* Combination of Spectre vl.lI
+ Spectre v4
int *p = ..;)
*p = secret;
A[x] = 0;

43

Axiomatic MCMs have spawned an
ecosystem of tools and research

SC,TSO,ARM
Java, Cl |, OpenCL memory model Weak MCM
L X N J ISA
/> MCM
B . verified
V Ve”f'?d compiler \/ microarchitectural \/ automatic fence
mappings implementation insertion
M https://check.cs.princeton.edu/
MCM = =
: : Ongoing
el work!
x86-TSO, Power, microarchitecture jal i
A7 Armvd, sequential consistency
RVWMO, RVTSO,
NVIDIA PTX

44

