SERBERUS: Comprehensive
Spectre Mitigations for
Constant-Time Code

Nicholas Mosier,'! Hamed Nemati,'? John Mitchell,! Caroline Trippel’
April 13,2023 ¢ Stanford Security Workshop

'Stanford University 2CISPA Helmholtz Center for Information Security

vulnerable secu.re
@ﬁ constant-time code -

/ constant-time code
OpensSsL SERBERU sw
Niibsodium L/ | se—

L2 PHT software @ PHT
.« . . BTB
£y BTE mitigation ¢
4*|¥ RSB _ - @ RsB
L2 sTL C
Spectre attacks Secure speculation

v" First comprehensive software mitigation for PHT, BTB, RSB,
STL speculation primitives
v" Proven correct

Hardware Side-Channel Attacks

@ Victim Attacker &

y = A‘iunsafe] </.>"

R

transmitter:
unsafe instruction that exhibiting @ hardware side-channel

operand-dependent resource usage

Constant-Time (CT) Programming

forbidden

control-flow if (unsafe)

load y = Alunsafe];

store Alunsafe] = y;

CT programs do not pass secrets to
sensitive (unsafe) transmitter
operands in any sequential execution

division X =a/b;

Constant-time programs are a

sequentially
secure

Spectre Attacks on CT Code

However, Spectre attacks can still
exploit transient execution to steer

secrets to transient transmitters

Constant-time programs are G but

sequentially
secure

N

Q@

transiently
insecure

permitted by CT

transient
(instruction does not commit)

Spectre Terminology

sequential execution
transient

transmitter with
/ transient execution O/ secret operand

speculation primitive
(control- or data-flow prediction)

Speculation Primitives

if (x < A_len)

control-flow Bly]

speculation primitives

PHT
conditional branch

f = &g;
(*f)(secret);

.
Alx]

BTB
indirect branch prediction

int f(x) {
return x;
}

Alx]

RSB
return address prediction

X = secret;
data-flow X NG;
speculation primitives Al x]
STL

store-to-load forwarding

X_= secret:
y\—\a1
Aly]
PSF
predictive store forwarding

Mitigating Spectre in Software

Mitigating all Spectre leakage due to any combination of {PHT, BTB, RSB, STL, PSF} is easy.

Doing so efficiently is hard.

Mitigation Leakage |Proof|PHT | BTB|RSB|STL|PSF
Two approaches: INTEL-LFENCE [29]] - -

LLVM-SLH [30] [-Jaren | X
@ Disable speculation primitive RETPOLINE [31] - - <
IPREDD [32] - - - |
‘ Prevent secret-dependent transmitters SSBD [33] - - - | -

PSFD [34]

F+RETP+SSBD
Three tools: S+RETP+SSBD

[-]
B 35 e
[llll Serialization instructions (e.g., LFENCE) SWIVLEALI_)(E;FET][36] % % :

/ Code rewriting (e.g., SLH) SERBERUS _(OUrs) Tt

3_% Speculation controls (e.g., SSBD)

@R

rEREECER

®
CEREERER

J | § |
0|QOO® !

SERBERUS Insights

I. Hardware model: CFl protections enable comprehensive analysis
of transient control-flow

2. Software requirements: static constant-time (CTS) overcomes
unsafe code patterns permitted by CT programming

3. Leakage characterization: Spectre leakage is due to four classes
of taint primitives, which assign secrets to publicly-typed variables

SERBERUS’ Hardware Model

Constraining transient control-flow Constraining transient data-flow

foo: 1 | foo:
< sf
CALL CALL
SERBERUS disables PSF, since it is
CFl protections) intractable to efficiently mitigate in
RET
RET software.
bar RET bar: RET
Unconstrained transient SERBERUS constrains transient control-flow
control-flow with CFl protections from Intel CET:

* Indirect branch tracking (forward-edge)

* Shadow stack (backward-edge)
Intractable to analyze...

Easy to analyze!

SERBERUS’ Software Requirements: CT Limitations

Is CT at least a good starting place for Spectre mitigations! No.

Two unsafe CT code patterns almost always leak secrets transiently
and inhibit efficient mitigations.

@ Latent CT violations

if (0)
X = A[secret]:

Underlying issue: transmitter’s sensitive operand
is statically dependent on a secretly-typed value

SERBERUS’ Software Requirements: CT Limitations

@ Spectre-unaware calling convention

process(secret);
\/
int process(int secret) {
return secret + 1;
}

int leak(int idx) {
return Alidx]:
}

Underlying issue: passing/returning secrets
by value is inherently dangerous

Solution: Wg propose static constiar?t-tlme (CTYS),
which extends CT to prohibit code patterns @ and@.

Taint Primitives in CTS Programs

* Taint primitive: instruction that assigned a secret
value to a publicly-typed variable when executed

* Four classes of taint primitives in CTS programs

* Spectre leakage in CTS programs occurs when a
taint primitive passes its result to a transmitter

* Suggests novel Spectre mitigation approach:
{X] Eliminate taint primitive
‘ Prevent taint-primitive-dependent transmitters

SERBERUS uses both strategies

NCAL
non-constant-address load

X
y

=k

NCAS
non-constant-address store
X = 0;
*p = secret;

y = A[X];

STKL
uninitialized stack load

int x = 0;
y = AlX];
SARG
unexpectedly secret argument

Q

foo(int Xx):

y = Alx];

SERBERUS Overview

* SERBERUS eliminates all secret leakage in CTS programs due to any
combination of {PHT, BTB, RSB, STL} speculation primitives.

* Consists of three intraprocedural passes

SERBERUS
@ secure
ﬁ vulnerable | CTS program
CTS program
Fence Function- Register
</> Insertion Private Cleaning m—)) </>
Stacks
/\ NCAL
NCAS
N NCAS X] {X] sTKL
/N STKL @ nNca ‘ NCAL

/\ SARG

SERBERUS’ Fence Insertion Pass

* Frames LFENCE insertion as a min-cut problem over the transient control-

flow graph

* Sources are candidate NCAL or NCAS taint primitives
* Sinks are dependent transmitters and instructions that may facilitate dependent

transmitters

Procedure

foo:

Transient CFG

src a

src a
LFENCE

sink b
sink b

src b
ore® LFENCE | sinka
sink a

SERBERUS’ Function-Private Stacks Pass

. , {X] sTKL
Stack sharing is the root cause of STKL: a publicly-typed uninitialized stack load
load may read a stale secret from prior procedure’s stack frame. int x = 0;
y = A[X];

SP »

foo() {
X = secret;

} SP -»

SERBERUS’ Function-Private Stacks Pass
{X] sTKL

Stack sharing is the root cause of STKL: a publicly-typed uninitialized stack load
load may read a stale secret from prior procedure’s stack frame. int x = 0;
y = A[X];
SP »
X

Solution: allocate a private stack to each procedure.

foo: ENDCALL

+ LD [ZR+PSPgr],SP // load private SP
bar() { | SUB SP, SP, k // frame allocation
prologue + LD [SP+0],ZR // probe for overflow
y @' + ST [ZR+PSPgr],SP // store private SP

N
I
E

. CALL rl
callsite + LD [ZR+PSPg]1,SP // load private SP

ADD SP,SP,k // frame deallocation
+ ST [ZR+PSPg]1,SP // store private SP
RET

+ LD [SP+0],ZR // probe for underflow
epilogue

SERBERUS’ Register Cleaning Pass

{X] SARG
unexpectedly secret argument
foo(int Xx):
y = Alx];
foo:
MOV r2, ©
Zero out non-argument MOV r3, ©
registers before every CALL ™
call/return MOV r1, ©
MOV r2, ©
MOV r3, ©

RET

LLSCT: Implementation of SERBERUS for LLVM

* Implemented as three of LLVM IR and machine passes

* Requires no user annotations
* Benchmarked runtime performance overhead over insecure baseline

* Evaluated against state-of-the-art mitigations:
* Ifence+retpoline+ssbd
* slh+retpoline+ssbd

* Testing setup: Intel 12t"-gen Core i9-12900KS processor (supports
Intel CET)

* Workloads: crypto primitives from OpenSSL, Libsodium, and HACL*

© Or;
N OO0
a RS«
200 1 W
-
— >
1754 . 8
= - 1 Ifence+tretpoline+ssbd
1504 N . 2 | slh+retpoline+ssbd
. on
N —|
125 > = u] LLSCT
S — N
§ 100 | 1 e fime
° 751 52 B S 2F o
= | o = oYX o0
504 | %o e g2 < > B
8y oo ‘ 82 o
=—CN : . o [
I o0 =T — 00
LB = e m: N e
0_
T T T T T T T T
f=| FENCE libsodium libsodium openssl openssl openssl openssl geomean geomean
] sha256 sha256 sha256 sha256 chacha20 curve25519 (all) (8KB)
r = retpoline 64B SKB 64B SKB SKB 64B

slh = speculative load hardening
ssbd = STL disable

fps = function-private stacks

20

Conclusions and Future Work

* SERBERUS is the first software mitigation for Spectre-
PHT/BTB/RSB/STL leakage in CT programs

* LLSCT: implementation of SERBERUS for LLVM

* LLSCT outperforms state-of-the-art mitigations in the crypto
brimitives we evaluate while offering stronger security guarantees

* Future work: overcoming performance limitations of applying LLSCT
more broadly in non-crypto-code

