Primality Tests and PRIMES in P

Nicholas Mosier

Middlebury College

December 8, 2019

Overview

Introduction to Primality Testing

Fermat's Little Theorem

Algorithmic Complexity and P

The AKS Primality Test

Conclusion

Introduction to Primality Testing

Primality Testing

A primality test is an algorithm that takes in a positive integer n
as input and returns whether n is prime or composite.

Primality Testing

A primality test is an algorithm that takes in a positive integer n
as input and returns whether n is prime or composite.

Example

Algorithm Check the primality of a positive integer n > 2.
Input: n € N with n > 2.
Output: Output PRIME if n is prime; otherwise output COMPOSITE.
for all 1 < k < ndo
if k| n then
return COMPOSITE.
return PRIME.

Fermat’s Little Theorem

Fermat's Little Theorem (FIT)

Theorem (Fermat'’s Little Theorem)

Let p be prime and a € N with p fa. Then

a?1=1 (mod p).

Fermat's Little Theorem (FIT)

Theorem (Fermat'’s Little Theorem)

Let p be prime and a € N with p fa. Then

a?1=1 (mod p).

When a=2, p=T7:

2’71 =64=7-9+1=1 (mod7).

Fermat's Little Theorem (FIT)

Theorem (Fermat'’s Little Theorem)

Let p be prime and a € N with p fa. Then

a?1=1 (mod p).

Example
When a=2, p=T7:

2’71 =64=7-9+1=1 (mod7).

But does Fermat's Little Theorem describe primality test?
That is, is the converse true?

Converse of Fermat's Little Theorem (First Attempt)

Let njae N withnta. If

a™l=1 (mod n),

then n is prime.

Converse of Fermat's Little Theorem (First Attempt)

Conjecture

Let njae N withnta. If

a™l=1 (mod n),

then n is prime.

Counterexample

When a =5 and p =4,

51 =125=31-441=1 (mod 4).

However, p = 4 is composite.

Converse of Fermat's Little Theorem (Second Attempt)

Let n € N. If for all b € N such that n{ b,

b"1=1 (mod n),

then n is prime.

Converse of Fermat's Little Theorem (Second Attempt)

Conjecture

Let n € N. If for all b € N such that n{ b,
b"1=1 (mod n),

then n is prime.

Counterexample

For all nt b,

b*® =1 (mod 561),
but 560 =3-11-16.

561 is a Carmichael number.

Lucas’s Primality Test

Let n € N and a € Z with gcd(n, a) = 1. If for all primes p | n — 1,
a(r=1/P £ 1 (mod n), then n is prime.

Lucas’s Primality Test

Theorem

Let n € N and a € Z with gcd(n, a) = 1. If for all primes p | n — 1,
a(r=1/P £ 1 (mod n), then n is prime.

True!

Generalization of Fermat's Little Theorem

Let a € Z and n € N with gcd(a,n) =1 and n > 2. n is prime if
and only if

(X+a)"=X"+a (mod n).

Generalization of Fermat's Little Theorem

Sufficiency (=). Suppose n is prime, and let 0 < i < n.
No positive integer less than the prime n divides n, so

(7) ~ —n!i)! p=m ((nn—_i)ll)i'! — (7)

eN

— (7)Xa’50 (mod n).

Finally, a” = a (mod n) by Fermat's Little Theorem.
Thus (X +a)" = X"+ a (mod n).

Generalization of Fermat's Little Theorem

Necessity (— = —). Suppose n is composite.
There exists a prime power pX | n but pk*1 { n. Consider the term

n n! ?
()X"_pap =————X"PaP =0 (mod n).
p (n—p)!' p!

Let f(m) denote the number of times p divides m.

f(n!)=f((n—p))+f(n)=Ff((n—p)!) +k
(p1) =1

= f(p) =f(n!) = f((n—p)") — f(p!)

=f((n=p") +k—F((n-p))-1
=k-—-1

Generalization of Fermat's Little Theorem

Necessity (- =).

Therefore, pk—1 | (Z) but p* ¢ (g)
Thus nt (Z)

But gcd(a, n) =1, so

(;)X”_pap #0 (mod n)

= (X+a)"#X"+a (mod n).

Algorithmic Complexity and P

Algorithmic Complexity

Definition (P)

P denotes the set of problems that can be solved by some
algorithm in polynomial time on the length of the input n.

Algorithmic Complexity

Definition (P)

P denotes the set of problems that can be solved by some
algorithm in polynomial time on the length of the input n.

When n € N, the “length” of n is the number of bits (binary
digits) in n, i.e. [logy(n)].

Algorithmic Complexity

Definition (P)

P denotes the set of problems that can be solved by some
algorithm in polynomial time on the length of the input n.

When n € N, the “length” of n is the number of bits (binary
digits) in n, i.e. [logy(n)].

Given an algorithm A and input n € N, let
T(A, n) = number of “steps” A takes to terminate on input n.

If
T(A, n) = O(logk n)

for some k > 0, then A € P.

Algorithmic Complexity

Example

The question POW10 “is n € N a power of 10" is in P because it
can be solved by the following algorithm:

while n > 1 do
= L
return YESif n=1; NOif n=0
This algorithm terminates in [log;o n| steps, so POW10 € P.

PRIMES

PRIMES denotes the question, given any positive integer n > 2,
“is n prime?”

PRIMES

PRIMES denotes the question, given any positive integer n > 2,
“is n prime?”

PRIMES € P.

PRIMES

PRIMES denotes the question, given any positive integer n > 2,
“is n prime?”

Theorem
PRIMES € P.

That is, there exists an algorithm that solves PRIMES in O(log” n)
steps for some k > 0.

The AKS Primality Test

The AKS Primality Test

“PRIMES is in P"

Authors: Manindra Agrawal, Neeraj Kayal, and Nitin Saxena

m Grad students at the Indian Institute of Technology Kapur
m Published in 2002.

m Appeared in Annals of Mathematics

The AKS Primality Test: Pseudocode

Algorithm Check the primality of a positive integer n > 2.

Input: n € N with n > 2.
Output: PRIME when n is prime; COMPOSITE when n is composite.
if n = aP for some a, b € N with b > 2 then
return COMPOSITE
Find the smallest r € N such that o,(n) > log?(n).
if 1 < gcd(a, n) < n for some a < r then
return COMPOSITE
if n < r then
return PRIME
for all 0 < a < |y/¢(r)logn] do
if (X+a)"#X"+a (mod X" —1,n) then
return COMPOSITE
return PRIME

The AKS Primality Test: Pseudocode

Algorithm Check the primality of a positive integer n > 2.

Input: n € N with n > 2.
Output: PRIME when n is prime; COMPOSITE when n is composite.
if n = aP for some a, b € N with b > 2 then
return COMPOSITE
Find the smallest r € N such that o,(n) > log?(n).
if 1 < gcd(a, n) < n for some a < r then
return COMPOSITE
if n < r then
return PRIME
for all 0 < a < |y/¢(r)logn] do
if (X +a)"# X"+ a (mod X" —1,n) then
return COMPOSITE
return PRIME

The AKS Primality Test: Insights

Generalization of FIT

if (X+a)"# X"+ a (mod n) then
return COMPOSITE

else
return PRIME

The AKS Primality Test: Insights

Generalization of FIT

if (X+a)"# X"+ a (mod n) then
return COMPOSITE

else
return PRIME

AKS Algorithm (Last Step)

forall 0 < a<|\/¢(r)logn| do
if (X+a)"#X"+a (mod X" —1,n) then
return COMPOSITE
return PRIME

The AKS Primality Test: Time Complexity

The algorithm terminates in O (Iogzl/2 n) time.

The AKS Primality Test: Time Complexity

The algorithm terminates in O <Iog21/2 n) time.

Sketch of proof.

The bottleneck is the last step. |[1/®(r)log n| different equations
must be verified.

for all 0 < a< |\/¢(r)logn| do
if (X+a)"#X"+a (mod X" —1,n) then
return COMPOSITE

m o(r) = O(r).

m r = O(log® n).

m Verify [\/#(r)logn] = O (y/rlog n) = O(log"/? n) equations.
L]

The AKS Primality Test: Time Complexity

Sketch of proof.

m Binary exponentiation on (X + a)” requires only O(log n)
polynomial multiplications.

m Each polynomial multiplication is either a square or
multipication by (X + a), requiring at most O(r) coefficient
multiplications.

m Coefficients can be multiplied in O(log n) time.

m Thus each congruence can be verified in
O(rlog? n) = O(log" n).

m So all equations can be verified in
O(log™/? n - log” n) = O(log?*/? n) time.

Conclusion

m That AKS algorithm runs in polynomial time doesn't mean
that the AKS algorithm is fast for all n.

m There exist far better algorithms for smaller n € N.

References |

1, 2, 3]

@ M. Agrawal, N. Kayal, and N. Saxena, “Primes is in p,”
Annals of mathematics, pp. 781-793, 2004.

[§ D. H. Lehmer, “Tests for primality by the converse of fermat's
theorem,” Bulletin of the American Mathematical Society,
vol. 33, no. 3, pp. 327-340, 1927.

@ P. D. Schumer, Introduction to number theory.
Brooks/Cole Publishing Company, 1996.

	Introduction to Primality Testing
	Fermat's Little Theorem
	Algorithmic Complexity and P
	The AKS Primality Test
	Conclusion

