Primality Tests and PRIMES in P

Nicholas Mosier

Middlebury College

December 8, 2019

- 1 Introduction to Primality Testing
- 2 Fermat's Little Theorem
- 3 Algorithmic Complexity and P

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- 4 The AKS Primality Test
- 5 Conclusion

1 Introduction to Primality Testing

- 2 Fermat's Little Theorem
- 3 Algorithmic Complexity and P

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 4 The AKS Primality Test
- 5 Conclusion

Primality Testing

Definition

A **primality test** is an algorithm that takes in a positive integer n as input and returns whether n is prime or composite.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Primality Testing

Definition

A **primality test** is an algorithm that takes in a positive integer n as input and returns whether n is prime or composite.

Example

Algorithm Check the primality of a positive integer $n \ge 2$.

Input: $n \in \mathbb{N}$ with $n \geq 2$.

Output: Output PRIME if *n* is prime; otherwise output COMPOSITE.

for all 1 < k < n do

if k | n then

return COMPOSITE.

return PRIME.

1 Introduction to Primality Testing

2 Fermat's Little Theorem

3 Algorithmic Complexity and P

4 The AKS Primality Test

5 Conclusion

Theorem (Fermat's Little Theorem)

Let p be prime and $a \in \mathbb{N}$ with p $\not|a$. Then

 $a^{p-1} \equiv 1 \pmod{p}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Fermat's Little Theorem)

Let p be prime and $a \in \mathbb{N}$ with p $\not|a$. Then

$$a^{p-1} \equiv 1 \pmod{p}.$$

Example

When a = 2, p = 7:

$$2^{7-1} = 64 = 7 \cdot 9 + 1 \equiv 1 \pmod{7}.$$

Theorem (Fermat's Little Theorem)

Let p be prime and $a \in \mathbb{N}$ with p $\not|a$. Then

 $a^{p-1} \equiv 1 \pmod{p}.$

Example

When a = 2, p = 7:

$$2^{7-1} = 64 = 7 \cdot 9 + 1 \equiv 1 \pmod{7}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

But does Fermat's Little Theorem describe primality test? That is, is the converse true?

Conjecture

Let $n, a \in \mathbb{N}$ with $n \nmid a$. If

 $a^{n-1} \equiv 1 \pmod{n},$

then n is prime.

◆□▶ ◆□▶ ◆ ≧▶ ◆ ≧▶ ─ 差 − のへぐ

Conjecture

Let $n, a \in \mathbb{N}$ with $n \nmid a$. If

$$a^{n-1}\equiv 1\pmod{n},$$

then n is prime.

Counterexample

When a = 5 and p = 4,

$$5^{4-1} = 125 = 31 \cdot 4 + 1 \equiv 1 \pmod{4}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

However, p = 4 is composite.

Converse of Fermat's Little Theorem (Second Attempt)

Conjecture

Let $n \in \mathbb{N}$. If for all $b \in \mathbb{N}$ such that $n \nmid b$,

$$b^{n-1} \equiv 1 \pmod{n},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

then n is prime.

Conjecture

Let $n \in \mathbb{N}$. If for all $b \in \mathbb{N}$ such that $n \nmid b$,

 $b^{n-1} \equiv 1 \pmod{n},$

then n is prime.

Counterexample

For all $n \nmid b$,

 $b^{560} \equiv 1 \pmod{561},$ but $560 = 3 \cdot 11 \cdot 16.$

561 is a Carmichael number.

Lucas's Primality Test

Theorem

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ with gcd(n, a) = 1. If for all primes $p \mid n - 1$, $a^{(n-1)/p} \not\equiv 1 \pmod{n}$, then n is prime.

Lucas's Primality Test

Theorem

Let $n \in \mathbb{N}$ and $a \in \mathbb{Z}$ with gcd(n, a) = 1. If for all primes $p \mid n - 1$, $a^{(n-1)/p} \not\equiv 1 \pmod{n}$, then n is prime.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

True!

Generalization of Fermat's Little Theorem

Theorem

Let $a \in \mathbb{Z}$ and $n \in \mathbb{N}$ with gcd(a, n) = 1 and $n \ge 2$. n is prime if and only if

$$(X+a)^n \equiv X^n + a \pmod{n}.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Proof.

Sufficiency (\implies). Suppose *n* is prime, and let 0 < i < n. No positive integer less than the prime *n* divides *n*, so

$$\binom{n}{i} = \frac{n!}{(n-i)! \, i!} = n \cdot \underbrace{\frac{(n-1)!}{(n-i)! \, i!}}_{\in \mathbb{N}} \implies n \mid \binom{n}{i}$$
$$\implies \binom{n}{i} Xa^{i} \equiv 0 \pmod{n}.$$

Finally, $a^n \equiv a \pmod{n}$ by Fermat's Little Theorem. Thus $(X + a)^n \equiv X^n + a \pmod{n}$.

Generalization of Fermat's Little Theorem

Proof.

Necessity $(\neg \implies \neg)$. Suppose *n* is composite. There exists a prime power $p^k \mid n$ but $p^{k+1} \nmid n$. Consider the term

$$\binom{n}{p}X^{n-p}a^p = \frac{n!}{(n-p)!\,p!}X^{n-p}a^p \stackrel{?}{\equiv} 0 \pmod{n}.$$

Let f(m) denote the number of times p divides m.

$$f(n!) = f((n-p)!) + f(n) = f((n-p)!) + k$$

and $f(p!) = 1$
$$\implies f\binom{n}{p} = f(n!) - f((n-p)!) - f(p!)$$

$$= f((n-p)!) + k - f((n-p)!) - 1$$

$$= k - 1.$$

Proof.

Ν

E

Necessity
$$(\neg \implies \neg)$$
.
Therefore, $p^{k-1} \mid {n \choose p}$ but $p^k \nmid {n \choose p}$.
Thus $n \nmid {n \choose p}$.
But $gcd(a, n) = 1$, so
 ${n \choose p} X^{n-p} a^p \not\equiv 0 \pmod{n}$
 $\implies (X+a)^n \not\equiv X^n + a \pmod{n}$.

1 Introduction to Primality Testing

- 2 Fermat's Little Theorem
- 3 Algorithmic Complexity and P

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 4 The AKS Primality Test
- 5 Conclusion

Definition (P)

P denotes the set of problems that can be solved by some algorithm in polynomial time on the length of the input n.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition (P)

P denotes the set of problems that can be solved by some algorithm in polynomial time on the length of the input n.

When $n \in \mathbb{N}$, the "length" of *n* is the number of bits (binary digits) in *n*, i.e. $\lceil \log_2(n) \rceil$.

Definition (P)

P denotes the set of problems that can be solved by some algorithm in polynomial time on the length of the input n.

When $n \in \mathbb{N}$, the "length" of *n* is the number of bits (binary digits) in *n*, i.e. $\lceil \log_2(n) \rceil$.

Given an algorithm \mathcal{A} and input $n \in \mathbb{N}$, let

T(A, n) = number of "steps" A takes to terminate on input n.

lf

$$T(\mathcal{A},n)=O(\log^k n)$$

for some $k \geq 0$, then $\mathcal{A} \in \mathbb{P}$.

Example

The question POW10 "is $n \in \mathbb{N}$ a power of 10" is in P because it can be solved by the following algorithm:

```
while n > 1 do

n \leftarrow \lfloor \frac{n}{10} \rfloor

return YES if n = 1; NO if n = 0

This algorithm terminates in \lceil \log_{10} n \rceil steps, so POW10 \in P.
```


Definition

PRIMES denotes the question, given any positive integer $n \ge 2$, "is *n* prime?"

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Definition

PRIMES denotes the question, given any positive integer $n \ge 2$, "is *n* prime?"

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Theorem

 $PRIMES \in P.$

Definition

PRIMES denotes the question, given any positive integer $n \ge 2$, "is *n* prime?"

Theorem

 $PRIMES \in P.$

That is, there exists an algorithm that solves PRIMES in $O(\log^k n)$ steps for some $k \ge 0$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

1 Introduction to Primality Testing

- 2 Fermat's Little Theorem
- 3 Algorithmic Complexity and P

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- 4 The AKS Primality Test
- 5 Conclusion

The AKS Primality Test

"PRIMES is in P"

Authors: Manindra Agrawal, Neeraj Kayal, and Nitin Saxena

Grad students at the Indian Institute of Technology Kapur

- Published in 2002.
- Appeared in Annals of Mathematics

Algorithm Check the primality of a positive integer $n \ge 2$.

Input: $n \in \mathbb{N}$ with n > 2. **Output:** PRIME when *n* is prime; COMPOSITE when *n* is composite. if $n = a^b$ for some $a, b \in \mathbb{N}$ with b > 2 then return COMPOSITE Find the smallest $r \in \mathbb{N}$ such that $o_r(n) > \log^2(n)$. if 1 < gcd(a, n) < n for some $a \le r$ then return COMPOSITE if n < r then return PRIME for all $0 \le a \le \lfloor \sqrt{\phi(r)} \log n \rfloor$ do if $(X + a)^n \not\equiv X^n + a \pmod{X^r - 1}$, *n*) then return COMPOSITE return PRIME

Algorithm Check the primality of a positive integer $n \ge 2$.

Input: $n \in \mathbb{N}$ with n > 2. **Output:** PRIME when *n* is prime; COMPOSITE when *n* is composite. if $n = a^b$ for some $a, b \in \mathbb{N}$ with b > 2 then return COMPOSITE Find the smallest $r \in \mathbb{N}$ such that $o_r(n) > \log^2(n)$. if $1 < \gcd(a, n) < n$ for some $a \le r$ then return COMPOSITE if n < r then return PRIME for all $0 \le a \le \lfloor \sqrt{\phi(r)} \log n \rfloor$ do if $(X + a)^n \not\equiv X^n + a \pmod{X^r - 1}$, *n*) then return COMPOSITE return PRIME

The AKS Primality Test: Insights

Generalization of FIT

if $(X + a)^n \not\equiv X^n + a \pmod{n}$ then return COMPOSITE else return PRIME

The AKS Primality Test: Insights

Generalization of FIT

if $(X + a)^n \not\equiv X^n + a \pmod{n}$ then return COMPOSITE else return PRIME

AKS Algorithm (Last Step)

for all
$$0 \le a \le \lfloor \sqrt{\phi(r)} \log n \rfloor$$
 do
if $(X + a)^n \not\equiv X^n + a \pmod{X^r - 1, n}$ then
return COMPOSITE
return PRIME

The AKS Primality Test: Time Complexity

Theorem

The algorithm terminates in $O\left(\log^{21/2} n\right)$ time.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The AKS Primality Test: Time Complexity

Theorem

The algorithm terminates in
$$O\left(\log^{21/2} n\right)$$
 time.

Sketch of proof.

The bottleneck is the last step. $\lfloor \sqrt{\phi(r)} \log n \rfloor$ different equations must be verified.

for all
$$0 \le a \le \lfloor \sqrt{\phi(r)} \log n \rfloor$$
 do
if $(X + a)^n \not\equiv X^n + a \pmod{X^r - 1, n}$ then
return COMPOSITE

•
$$\phi(r) = O(r)$$
.
• $r = O(\log^5 n)$.
• Verify $\lfloor \sqrt{\phi(r)} \log n \rfloor = O(\sqrt{r} \log n) = O(\log^{7/2} n)$ equations.

The AKS Primality Test: Time Complexity

Sketch of proof.

- Binary exponentiation on (X + a)ⁿ requires only O(log n) polynomial multiplications.
- Each polynomial multiplication is either a square or multiplication by (X + a), requiring at most O(r) coefficient multiplications.

- Coefficients can be multiplied in O(log n) time.
- Thus each congruence can be verified in $O(r \log^2 n) = O(\log^7 n).$
- So all equations can be verified in $O(\log^{7/2} n \cdot \log^7 n) = O(\log^{21/2} n)$ time.

Conclusion

That AKS algorithm runs in polynomial time doesn't mean that the AKS algorithm is *fast* for all *n*.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• There exist far better algorithms for smaller $n \in \mathbb{N}$.

References I

[1, 2, 3]

- M. Agrawal, N. Kayal, and N. Saxena, "Primes is in p," Annals of mathematics, pp. 781–793, 2004.
- D. H. Lehmer, "Tests for primality by the converse of fermat's theorem," *Bulletin of the American Mathematical Society*, vol. 33, no. 3, pp. 327–340, 1927.

P. D. Schumer, *Introduction to number theory*. Brooks/Cole Publishing Company, 1996.