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Primality Testing

Definition

A primality test is an algorithm that takes in a positive integer n
as input and returns whether n is prime or composite.

Example

Algorithm Check the primality of a positive integer n ≥ 2.

Input: n ∈ N with n ≥ 2.
Output: Output PRIME if n is prime; otherwise output COMPOSITE.

for all 1 < k < n do
if k | n then

return COMPOSITE.
return PRIME.
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Fermat’s Little Theorem (FlT)

Theorem (Fermat’s Little Theorem)

Let p be prime and a ∈ N with p 6 | a. Then

ap−1 ≡ 1 (mod p).

Example

When a = 2, p = 7:

27−1 = 64 = 7 · 9 + 1 ≡ 1 (mod 7).

But does Fermat’s Little Theorem describe primality test?
That is, is the converse true?
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Converse of Fermat’s Little Theorem (First Attempt)

Conjecture

Let n, a ∈ N with n - a. If

an−1 ≡ 1 (mod n),

then n is prime.

Counterexample

When a = 5 and p = 4,

54−1 = 125 = 31 · 4 + 1 ≡ 1 (mod 4).

However, p = 4 is composite.
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Converse of Fermat’s Little Theorem (Second Attempt)

Conjecture

Let n ∈ N. If for all b ∈ N such that n - b,

bn−1 ≡ 1 (mod n),

then n is prime.

Counterexample

For all n - b,

b560 ≡ 1 (mod 561),

but 560 = 3 · 11 · 16.

561 is a Carmichael number.
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Lucas’s Primality Test

Theorem

Let n ∈ N and a ∈ Z with gcd(n, a) = 1. If for all primes p | n − 1,
a(n−1)/p 6≡ 1 (mod n), then n is prime.

True!
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Generalization of Fermat’s Little Theorem

Theorem

Let a ∈ Z and n ∈ N with gcd(a, n) = 1 and n ≥ 2. n is prime if
and only if

(X + a)n ≡ X n + a (mod n).



Generalization of Fermat’s Little Theorem

Proof.

Sufficiency ( =⇒ ). Suppose n is prime, and let 0 < i < n.
No positive integer less than the prime n divides n, so(

n

i

)
=

n!

(n − i)! i !
= n · (n − 1)!

(n − i)! i !︸ ︷︷ ︸
∈N

=⇒ n |
(
n

i

)

=⇒
(
n

i

)
Xai ≡ 0 (mod n).

Finally, an ≡ a (mod n) by Fermat’s Little Theorem.
Thus (X + a)n ≡ X n + a (mod n).



Generalization of Fermat’s Little Theorem

Proof.

Necessity (¬ =⇒ ¬). Suppose n is composite.
There exists a prime power pk | n but pk+1 - n. Consider the term(

n

p

)
X n−pap =

n!

(n − p)! p!
X n−pap

?≡ 0 (mod n).

Let f (m) denote the number of times p divides m.

f (n!) = f ((n − p)!) + f (n) = f ((n − p)!) + k

and f (p!) = 1

=⇒ f

(
n

p

)
= f (n!)− f ((n − p)!)− f (p!)

= f ((n − p)!) + k − f ((n − p)!)− 1

= k − 1.



Generalization of Fermat’s Little Theorem

Proof.

Necessity (¬ =⇒ ¬).
Therefore, pk−1 |

(n
p

)
but pk -

(n
p

)
.

Thus n -
(n
p

)
.

But gcd(a, n) = 1, so(
n

p

)
X n−pap 6≡ 0 (mod n)

=⇒ (X + a)n 6≡ X n + a (mod n).
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Algorithmic Complexity

Definition (P)

P denotes the set of problems that can be solved by some
algorithm in polynomial time on the length of the input n.

When n ∈ N, the “length” of n is the number of bits (binary
digits) in n, i.e. dlog2(n)e.

Given an algorithm A and input n ∈ N, let

T (A, n) = number of “steps” A takes to terminate on input n.

If
T (A, n) = O(logk n)

for some k ≥ 0, then A ∈ P.
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Algorithmic Complexity

Example

The question POW10 “is n ∈ N a power of 10” is in P because it
can be solved by the following algorithm:

while n > 1 do
n← b n

10c
return YES if n = 1; NO if n = 0

This algorithm terminates in dlog10 ne steps, so POW10 ∈ P.



PRIMES

Definition

PRIMES denotes the question, given any positive integer n ≥ 2,
“is n prime?”

Theorem

PRIMES ∈ P.

That is, there exists an algorithm that solves PRIMES in O(logk n)
steps for some k ≥ 0.
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The AKS Primality Test

“PRIMES is in P”
Authors: Manindra Agrawal, Neeraj Kayal, and Nitin Saxena

Grad students at the Indian Institute of Technology Kapur

Published in 2002.

Appeared in Annals of Mathematics



The AKS Primality Test: Pseudocode

Algorithm Check the primality of a positive integer n ≥ 2.

Input: n ∈ N with n ≥ 2.
Output: PRIME when n is prime; COMPOSITE when n is composite.

if n = ab for some a, b ∈ N with b ≥ 2 then
return COMPOSITE

Find the smallest r ∈ N such that or (n) > log2(n).
if 1 < gcd(a, n) < n for some a ≤ r then

return COMPOSITE

if n ≤ r then
return PRIME

for all 0 ≤ a ≤ b
√
φ(r) log nc do

if (X + a)n 6≡ X n + a (mod X r − 1, n) then
return COMPOSITE

return PRIME
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The AKS Primality Test: Insights

Generalization of FlT

if (X + a)n 6≡ X n + a (mod n) then
return COMPOSITE

else
return PRIME

AKS Algorithm (Last Step)

for all 0 ≤ a ≤ b
√
φ(r) log nc do

if (X + a)n 6≡ X n + a (mod X r − 1, n) then
return COMPOSITE

return PRIME
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The AKS Primality Test: Time Complexity

Theorem

The algorithm terminates in O
(

log21/2 n
)
time.



The AKS Primality Test: Time Complexity

Theorem

The algorithm terminates in O
(

log21/2 n
)
time.

Sketch of proof.

The bottleneck is the last step. b
√
φ(r) log nc different equations

must be verified.

for all 0 ≤ a ≤ b
√
φ(r) log nc do

if (X + a)n 6≡ X n + a (mod X r − 1, n) then
return COMPOSITE

φ(r) = O(r).

r = O(log5 n).

Verify b
√
φ(r) log nc = O

(√
r log n

)
= O(log7/2 n) equations.



The AKS Primality Test: Time Complexity

Sketch of proof.

Binary exponentiation on (X + a)n requires only O(log n)
polynomial multiplications.

Each polynomial multiplication is either a square or
multipication by (X + a), requiring at most O(r) coefficient
multiplications.

Coefficients can be multiplied in O(log n) time.

Thus each congruence can be verified in
O(r log2 n) = O(log7 n).

So all equations can be verified in
O(log7/2 n · log7 n) = O(log21/2 n) time.



Conclusion

That AKS algorithm runs in polynomial time doesn’t mean
that the AKS algorithm is fast for all n.

There exist far better algorithms for smaller n ∈ N.
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