
Primality Tests and PRIMES in P

Nicholas Mosier

Middlebury College

December 8, 2019

Overview

1 Introduction to Primality Testing

2 Fermat’s Little Theorem

3 Algorithmic Complexity and P

4 The AKS Primality Test

5 Conclusion

1 Introduction to Primality Testing

2 Fermat’s Little Theorem

3 Algorithmic Complexity and P

4 The AKS Primality Test

5 Conclusion

Primality Testing

Definition

A primality test is an algorithm that takes in a positive integer n
as input and returns whether n is prime or composite.

Example

Algorithm Check the primality of a positive integer n ≥ 2.

Input: n ∈ N with n ≥ 2.
Output: Output PRIME if n is prime; otherwise output COMPOSITE.

for all 1 < k < n do
if k | n then

return COMPOSITE.
return PRIME.

Primality Testing

Definition

A primality test is an algorithm that takes in a positive integer n
as input and returns whether n is prime or composite.

Example

Algorithm Check the primality of a positive integer n ≥ 2.

Input: n ∈ N with n ≥ 2.
Output: Output PRIME if n is prime; otherwise output COMPOSITE.

for all 1 < k < n do
if k | n then

return COMPOSITE.
return PRIME.

1 Introduction to Primality Testing

2 Fermat’s Little Theorem

3 Algorithmic Complexity and P

4 The AKS Primality Test

5 Conclusion

Fermat’s Little Theorem (FlT)

Theorem (Fermat’s Little Theorem)

Let p be prime and a ∈ N with p 6 | a. Then

ap−1 ≡ 1 (mod p).

Example

When a = 2, p = 7:

27−1 = 64 = 7 · 9 + 1 ≡ 1 (mod 7).

But does Fermat’s Little Theorem describe primality test?
That is, is the converse true?

Fermat’s Little Theorem (FlT)

Theorem (Fermat’s Little Theorem)

Let p be prime and a ∈ N with p 6 | a. Then

ap−1 ≡ 1 (mod p).

Example

When a = 2, p = 7:

27−1 = 64 = 7 · 9 + 1 ≡ 1 (mod 7).

But does Fermat’s Little Theorem describe primality test?
That is, is the converse true?

Fermat’s Little Theorem (FlT)

Theorem (Fermat’s Little Theorem)

Let p be prime and a ∈ N with p 6 | a. Then

ap−1 ≡ 1 (mod p).

Example

When a = 2, p = 7:

27−1 = 64 = 7 · 9 + 1 ≡ 1 (mod 7).

But does Fermat’s Little Theorem describe primality test?
That is, is the converse true?

Converse of Fermat’s Little Theorem (First Attempt)

Conjecture

Let n, a ∈ N with n - a. If

an−1 ≡ 1 (mod n),

then n is prime.

Counterexample

When a = 5 and p = 4,

54−1 = 125 = 31 · 4 + 1 ≡ 1 (mod 4).

However, p = 4 is composite.

Converse of Fermat’s Little Theorem (First Attempt)

Conjecture

Let n, a ∈ N with n - a. If

an−1 ≡ 1 (mod n),

then n is prime.

Counterexample

When a = 5 and p = 4,

54−1 = 125 = 31 · 4 + 1 ≡ 1 (mod 4).

However, p = 4 is composite.

Converse of Fermat’s Little Theorem (Second Attempt)

Conjecture

Let n ∈ N. If for all b ∈ N such that n - b,

bn−1 ≡ 1 (mod n),

then n is prime.

Counterexample

For all n - b,

b560 ≡ 1 (mod 561),

but 560 = 3 · 11 · 16.

561 is a Carmichael number.

Converse of Fermat’s Little Theorem (Second Attempt)

Conjecture

Let n ∈ N. If for all b ∈ N such that n - b,

bn−1 ≡ 1 (mod n),

then n is prime.

Counterexample

For all n - b,

b560 ≡ 1 (mod 561),

but 560 = 3 · 11 · 16.

561 is a Carmichael number.

Lucas’s Primality Test

Theorem

Let n ∈ N and a ∈ Z with gcd(n, a) = 1. If for all primes p | n − 1,
a(n−1)/p 6≡ 1 (mod n), then n is prime.

True!

Lucas’s Primality Test

Theorem

Let n ∈ N and a ∈ Z with gcd(n, a) = 1. If for all primes p | n − 1,
a(n−1)/p 6≡ 1 (mod n), then n is prime.

True!

Generalization of Fermat’s Little Theorem

Theorem

Let a ∈ Z and n ∈ N with gcd(a, n) = 1 and n ≥ 2. n is prime if
and only if

(X + a)n ≡ X n + a (mod n).

Generalization of Fermat’s Little Theorem

Proof.

Sufficiency (=⇒). Suppose n is prime, and let 0 < i < n.
No positive integer less than the prime n divides n, so(

n

i

)
=

n!

(n − i)! i !
= n · (n − 1)!

(n − i)! i !︸ ︷︷ ︸
∈N

=⇒ n |
(
n

i

)

=⇒
(
n

i

)
Xai ≡ 0 (mod n).

Finally, an ≡ a (mod n) by Fermat’s Little Theorem.
Thus (X + a)n ≡ X n + a (mod n).

Generalization of Fermat’s Little Theorem

Proof.

Necessity (¬ =⇒ ¬). Suppose n is composite.
There exists a prime power pk | n but pk+1 - n. Consider the term(

n

p

)
X n−pap =

n!

(n − p)! p!
X n−pap

?≡ 0 (mod n).

Let f (m) denote the number of times p divides m.

f (n!) = f ((n − p)!) + f (n) = f ((n − p)!) + k

and f (p!) = 1

=⇒ f

(
n

p

)
= f (n!)− f ((n − p)!)− f (p!)

= f ((n − p)!) + k − f ((n − p)!)− 1

= k − 1.

Generalization of Fermat’s Little Theorem

Proof.

Necessity (¬ =⇒ ¬).
Therefore, pk−1 |

(n
p

)
but pk -

(n
p

)
.

Thus n -
(n
p

)
.

But gcd(a, n) = 1, so(
n

p

)
X n−pap 6≡ 0 (mod n)

=⇒ (X + a)n 6≡ X n + a (mod n).

1 Introduction to Primality Testing

2 Fermat’s Little Theorem

3 Algorithmic Complexity and P

4 The AKS Primality Test

5 Conclusion

Algorithmic Complexity

Definition (P)

P denotes the set of problems that can be solved by some
algorithm in polynomial time on the length of the input n.

When n ∈ N, the “length” of n is the number of bits (binary
digits) in n, i.e. dlog2(n)e.

Given an algorithm A and input n ∈ N, let

T (A, n) = number of “steps” A takes to terminate on input n.

If
T (A, n) = O(logk n)

for some k ≥ 0, then A ∈ P.

Algorithmic Complexity

Definition (P)

P denotes the set of problems that can be solved by some
algorithm in polynomial time on the length of the input n.

When n ∈ N, the “length” of n is the number of bits (binary
digits) in n, i.e. dlog2(n)e.

Given an algorithm A and input n ∈ N, let

T (A, n) = number of “steps” A takes to terminate on input n.

If
T (A, n) = O(logk n)

for some k ≥ 0, then A ∈ P.

Algorithmic Complexity

Definition (P)

P denotes the set of problems that can be solved by some
algorithm in polynomial time on the length of the input n.

When n ∈ N, the “length” of n is the number of bits (binary
digits) in n, i.e. dlog2(n)e.

Given an algorithm A and input n ∈ N, let

T (A, n) = number of “steps” A takes to terminate on input n.

If
T (A, n) = O(logk n)

for some k ≥ 0, then A ∈ P.

Algorithmic Complexity

Example

The question POW10 “is n ∈ N a power of 10” is in P because it
can be solved by the following algorithm:

while n > 1 do
n← b n

10c
return YES if n = 1; NO if n = 0

This algorithm terminates in dlog10 ne steps, so POW10 ∈ P.

PRIMES

Definition

PRIMES denotes the question, given any positive integer n ≥ 2,
“is n prime?”

Theorem

PRIMES ∈ P.

That is, there exists an algorithm that solves PRIMES in O(logk n)
steps for some k ≥ 0.

PRIMES

Definition

PRIMES denotes the question, given any positive integer n ≥ 2,
“is n prime?”

Theorem

PRIMES ∈ P.

That is, there exists an algorithm that solves PRIMES in O(logk n)
steps for some k ≥ 0.

PRIMES

Definition

PRIMES denotes the question, given any positive integer n ≥ 2,
“is n prime?”

Theorem

PRIMES ∈ P.

That is, there exists an algorithm that solves PRIMES in O(logk n)
steps for some k ≥ 0.

1 Introduction to Primality Testing

2 Fermat’s Little Theorem

3 Algorithmic Complexity and P

4 The AKS Primality Test

5 Conclusion

The AKS Primality Test

“PRIMES is in P”
Authors: Manindra Agrawal, Neeraj Kayal, and Nitin Saxena

Grad students at the Indian Institute of Technology Kapur

Published in 2002.

Appeared in Annals of Mathematics

The AKS Primality Test: Pseudocode

Algorithm Check the primality of a positive integer n ≥ 2.

Input: n ∈ N with n ≥ 2.
Output: PRIME when n is prime; COMPOSITE when n is composite.

if n = ab for some a, b ∈ N with b ≥ 2 then
return COMPOSITE

Find the smallest r ∈ N such that or (n) > log2(n).
if 1 < gcd(a, n) < n for some a ≤ r then

return COMPOSITE

if n ≤ r then
return PRIME

for all 0 ≤ a ≤ b
√
φ(r) log nc do

if (X + a)n 6≡ X n + a (mod X r − 1, n) then
return COMPOSITE

return PRIME

The AKS Primality Test: Pseudocode

Algorithm Check the primality of a positive integer n ≥ 2.

Input: n ∈ N with n ≥ 2.
Output: PRIME when n is prime; COMPOSITE when n is composite.

if n = ab for some a, b ∈ N with b ≥ 2 then
return COMPOSITE

Find the smallest r ∈ N such that or (n) > log2(n).
if 1 < gcd(a, n) < n for some a ≤ r then

return COMPOSITE

if n ≤ r then
return PRIME

for all 0 ≤ a ≤ b
√
φ(r) log nc do

if (X + a)n 6≡ X n + a (mod X r − 1, n) then
return COMPOSITE

return PRIME

The AKS Primality Test: Insights

Generalization of FlT

if (X + a)n 6≡ X n + a (mod n) then
return COMPOSITE

else
return PRIME

AKS Algorithm (Last Step)

for all 0 ≤ a ≤ b
√
φ(r) log nc do

if (X + a)n 6≡ X n + a (mod X r − 1, n) then
return COMPOSITE

return PRIME

The AKS Primality Test: Insights

Generalization of FlT

if (X + a)n 6≡ X n + a (mod n) then
return COMPOSITE

else
return PRIME

AKS Algorithm (Last Step)

for all 0 ≤ a ≤ b
√
φ(r) log nc do

if (X + a)n 6≡ X n + a (mod X r − 1, n) then
return COMPOSITE

return PRIME

The AKS Primality Test: Time Complexity

Theorem

The algorithm terminates in O
(

log21/2 n
)
time.

The AKS Primality Test: Time Complexity

Theorem

The algorithm terminates in O
(

log21/2 n
)
time.

Sketch of proof.

The bottleneck is the last step. b
√
φ(r) log nc different equations

must be verified.

for all 0 ≤ a ≤ b
√
φ(r) log nc do

if (X + a)n 6≡ X n + a (mod X r − 1, n) then
return COMPOSITE

φ(r) = O(r).

r = O(log5 n).

Verify b
√
φ(r) log nc = O

(√
r log n

)
= O(log7/2 n) equations.

The AKS Primality Test: Time Complexity

Sketch of proof.

Binary exponentiation on (X + a)n requires only O(log n)
polynomial multiplications.

Each polynomial multiplication is either a square or
multipication by (X + a), requiring at most O(r) coefficient
multiplications.

Coefficients can be multiplied in O(log n) time.

Thus each congruence can be verified in
O(r log2 n) = O(log7 n).

So all equations can be verified in
O(log7/2 n · log7 n) = O(log21/2 n) time.

Conclusion

That AKS algorithm runs in polynomial time doesn’t mean
that the AKS algorithm is fast for all n.

There exist far better algorithms for smaller n ∈ N.

References I

[1, 2, 3]

M. Agrawal, N. Kayal, and N. Saxena, “Primes is in p,”
Annals of mathematics, pp. 781–793, 2004.

D. H. Lehmer, “Tests for primality by the converse of fermat’s
theorem,” Bulletin of the American Mathematical Society,
vol. 33, no. 3, pp. 327–340, 1927.

P. D. Schumer, Introduction to number theory.
Brooks/Cole Publishing Company, 1996.

	Introduction to Primality Testing
	Fermat's Little Theorem
	Algorithmic Complexity and P
	The AKS Primality Test
	Conclusion

