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Abstract

Integer factorization is an inherently difficult problem for which there is no known algo-
rithm that produces an answer in polynomial time. Until recently, it was unknown whether
the very similar but weaker problem of primality testing is equally difficult. Primality test-
ing is the problem of determining whether an arbitrary positive integer n ∈ N is prime
or composite. In 2002, Agrawal, Kayal, and Saxena presented a provably correct deter-
ministic primality test that terminates in polynomial time over all N. Although previous
polynomial-time algorithms had been presented, they rely upon unproven claims such as
the Riemann Hypothesis. We restrict our focus to algorithms that are unconditionally
correct.

In this paper, we review principles common to existing deterministic, polynomial-time
primality tests, specifically Fermat’s Little Theorem (FlT) and the related topic of cy-
clotomic fields. We introduce a simple primality test based on FlT, and then discuss
increasingly advanced algorithms (Pocklington primality test, APR primality test). In the
second part of the paper, we prove the correctness of the AKS Primality Test, concluding
that primality testing is a problem solvable in polynomial time.
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1 Notation and Definitions

1.1 Divisibility

Definition 1. An integer a divides another integer b if b = ka for some integer k. Divisi-
bility is denoted by a | b.

Definition 2. For all k, n ∈ N, let αk(n) denote the exponent on the largest power of k
that divides n. More precisely,

αk(n) = max
{
i ∈ N ∪ {0} : ki | n

}
.

If k is prime, then αk(n) denotes the exponent on k in the prime factorization of n.

1.2 Greatest Common Divisor

Definition 3. The greatest common divisor of two positive integers a and b, denoted by
gcd(a, b), is defined as the greatest positive integer n that divides both a and b, i.e.

gcd(a, b) = max {n ∈ N : n | a and n | b} .

One useful property of the greatest common divisor is that it divides both of its argu-
ments, i.e. given integers a and b,

gcd(a, b) | a
gcd(a, b) | b.

Property 1 (Generalization of Euclid’s Lemma). Let n, a, b ∈ N. If n | ab and gcd(n, a) =
1, then n | b.
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1.3 Least Common Multiple

Definition 4. The least common multiple of two positive integers a and b, denoted by
lcm(a, b), is the least positive integer n such that a | n and b | n.

Definition 5. The least common multiple of the first n positive integers, denoted by
LCM(n), is the least positive integer N such that for all m ≤ n, m | N .

Example 1. LCM(5) = 22 · 3 · 5 = 60, since 2 | 60, 3 | 60, 4 | 60, and 5 | 60, but for any
proper divisor d | 60, some positive integer less than or equal ot 5 does not divide d.

Property 2. For all n ∈ N, LCM(n) | n.

1.4 Modular Congruence

Definition 6. An integer a is congruent to another integer b modulo some positive integer
n, denoted with a ≡ b (mod n), if n | (a− b).

Property 3. If a ≡ b (mod mn), then

a ≡ b (mod m) and

a ≡ b (mod n).

Definition 7. The order of an integer a ∈ Z modulo n, denoted by on(a), is the smallest
positive integer i such that ai ≡ 1 (mod n). (If no such i exists, a is said to have infinite
order.)

Example 2. The order of a = 3 modulo n = 4 is oa(n) = 2, since

31 6≡ 1 (mod 4) but

32 = 9 ≡ 1 (mod 4).

1.5 Group Theory

Definition 8. A group is a set G under a closed binary operation · : G × G → G that
satisfies the following properties:

• Associativity. (ab)c = a(bc) whenever a, b, c ∈ G.

• Identity. There exists an identity element 1 ∈ G such that for all a ∈ G, a · 1 =
1 · a = a.

• Inverse. For each a ∈ G, there exists an inverse a−1 ∈ G such that aa−1 = a−1a = e.
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Example 3. Let Fp = {0, 1, 2, . . . , p− 1} denote the finite field of the first p nonnegative
integers, where p is prime. Fp is a group under integer multiplication modulo p.

Definition 9. Let a be an element of a group G. The set generated by a, denoted by 〈a〉,
is equal to

〈a〉 =
{
ai : i ≥ 0

}
.

〈a〉 is a subgroup of G.

Definition 10 (Roots). Let a, b be elements of a group G. a is a nth root of b if an = b.
If b = 1, then a is called a nth root of unity. If for all 0 ≤ i < n, ai 6= b, then a is called a
nth primitive root of b. Note that nth roots are not necessarily unique.

1.6 Polynomials

The following definitions are based on [1].

Definition 11 (Polynomial Rings). Let R be a ring and let X be a symbolic variable. The
polynomial ring of X over R, denoted by R[X], is defined as

R[X] =

{
n∑
i=0

riX
i | n ≥ 0 and each ri ∈ R

}
.

Definition 12 (Polynomial Divisibility). Let polynomials a(X), b(X) ∈ R[X]. a(X) di-
vides b(X), written as a(X) | b(X), if a(X) = b(X)c(X) for some polynomial c(X) ∈ R[X].

Definition 13 (Polynomial Irreducibility). A polynomial a(X) ∈ R[X] is irreducible over
R if no polynomial b(X) ∈ R[X] of degree one or more (with A(X) 6= B(X)) divides A(X).
That is, if b(X) | a(X), then a(X) = b(X) or b(X) = c for some c ∈ R.

Example 4. The polynomial X2 + 1 ∈ Z[X] is irreducible over R, but the polynomial
X2 − 1 ∈ Z[X] is not irreducible, since X2 − 1 = (X − 1)(X + 1).

Definition 14 (Cyclotomic Polynomials over Polynomial Rings). Let Fp[X] be the poly-
nomial ring over the finite field F of order p. Let n be a positive integer such that p - n.
Let z be be an nth primitive root of unity in Fp. The nth cyclotomic polynomial in F [X]
is defined as

Qn(X) =
∏
s=1

gcd(s,n)=1

(X − zs) .

Note that Qn(X) is uniquely defined and at least one primitive root of unity z is guaranteed
to exist [1].
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Definition 15 (Polynomial Residue Class Rings). The set R[X]/(r(X)) denotes the set of
polynomial residues in R[X] modulo r(X). To be precise, R[X]/r(X) is a set of congruence
classes, where each class contains polynomials that are pairwise congruent to one another
modulo r(X). That is,

R[X]/(r(X)) = {[a(X)] | a(X) ∈ R[X]} where

[a(X)] = {b(X) ∈ R[X] | a(X) ≡ b(X) (mod r(X))} ,

i.e. [a(X)] ⊆ H[X] denotes the set of polynomials b(X) ∈ R[X] congruent to a(X) modulo
r(X).

Example 5.
F2[X]/(X2 + 1) = {0, 1, X,X + 1}.

1.7 Combinatorics

Definition 16. The number of ways to choose a subset of k elements from a set of n
elements is denoted by the choose function,

(
n
k

)
, where n and k are nonnegative integers

and k ≤ n. The choose function can be computed with the following formula:(
n

k

)
=

n!

k! (n− k)!
.

Property 4. Let n, k and r be nonnegative integers with r ≤ k ≤ n. Then(
n

k

)
≥
(
n− r
k − r

)
.

2 Introduction to Primality Testing

A prime is a positive integer greater than 1 that is divisible by only 1 and itself. Prime
numbers are the building blocks of number theory. For example, the Fundamental Theorem
of Arithmetic states that each positive integer has a unique prime factorization, i.e. can
be written as a unique product of primes [2]. As a result, two of the most fundamental
questions about each positive integer n are (i) is n prime, and (ii) what is the prime
factorization of n? In this paper, we will concern ourselves with answers to the first
question. Procedures that determine whether n is prime or composite in finite time are
called primality tests.

Definition 17. A primality test is a decision procedure that, given an n ∈ N (n ≥ 2) as
input, returns PRIME if and only if n is prime and COMPOSITE if and only if n is composite.
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In order for a primality test to be correct and useful, it needs to leverage a property
that all prime numbers possess and no composite numbers possess (or vice versa). The
most obvious property unique to prime numbers comes straight from their definition: every
prime number is divisible by no positive integer greater than 1 and less than the prime
number itself. This suggests the most obvious primality test:

Algorithm 1 Check the primality of a positive integer n ≥ 2.

Require: n ∈ N with n ≥ 2.
Ensure: Output PRIME if n is prime; otherwise output COMPOSITE.

for all 1 < k < n do
if k | n then

return COMPOSITE.
return PRIME.

The problem with this approach is that it takes up to n− 2 divisibility checks! If n is
a very large prime, then this algorithm takes unacceptably long to terminate.

Remark 1. Primality testing is not to be confused with integer factorization. Integer
factorization is believed to be a more “difficult” problem than primality testing (“difficult”
in a rigorous way – see Section ??? on algorithmic complexity classes.

One of the more common starting points for primality tests is the following observation
made by Pierre de Fermat [2]:

Theorem 1 (Fermat’s Little Theorem). Let p be prime and a ∈ N with p - a. Then

ap−1 ≡ 1 (mod p).

Proof. (Omitted; see [2].)

However, note that Theorem 1 is not an if-and-only-if statement. As a result, it falls
short of being a primality test. The following example demonstrates this.

Example 6. Take a = 5 and p = 4. Then

ap = 54−1 = 125 = 31 · 4 + 1 ≡ 1 (mod 4).

Therefore, the unqualified converse of Theorem 1 is not true in general.

Strengthening our hypothesis brings us closer to a primality test.

Theorem 2. Let n ∈ N and a ∈ Z with gcd(a, n) = 1. If an−1 ≡ 1 (mod n) and for all
x | n− 1 with x < n− 1, it is the case that ax 6≡ 1 (mod n), then n is prime.
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Proof. Suppose an−1 ≡ 1 (mod n) and for all x | n − 1 with x < n − 1, ax 6≡ 1 (mod n).
Let s = min

{
k ∈ N | ak ≡ 1 (mod n)

}
. Applying the Division Algorithm, we have that

n− 1 = ks+ r for some integers k ∈ Z and 0 ≤ r < s. Then

1 ≡ an−1 = aks+r = aksar = (as)k ar ≡ 1kar = ar.

However, s is the minimum positive integer such that as ≡ 1 (mod n), but r < s, so r = 0,
and thus s | n− 1. If s < n− 1, then by the hypothesis, as 6≡ 1 (mod n), a contradiction.
Therefore, s = n − 1. But on(a) divides φ(n) [2], but on(a) = n − 1, so φ(n) = n − 1. It
directly follows that n is prime.

Theorem 2 is still not an if-and-only-if statement, however. This means that while
the property described the hypothesis is not possessed by any composites, it need not be
possessed by all primes.

Example 7. Consider n = 5, a = 4. Note that

an−1 = 45−1 = 44 = 256 ≡ 1 (mod 5).

However, when x = 2 so that x | n− 1 = 4,

ax = 42 = 16 ≡ 1 (mod 5).

Therefore, the hypothesis of Theorem 2 fails, so it says nothing about the primality of
n = 5.

As we have seen in Example 7, applying Theorem 2 is sometimes inconclusive about
the primality of a positive integer n. We can improve upon the strength of Theorem 2,
though.

Theorem 3 (Lucas’s Primality Test). Let n ∈ N and a ∈ Z with gcd(n, a). If for all
primes p | n− 1, a(n−1)/p 6≡ 1 (mod n), then n is prime.

Proof. Let x | n − 1 with x < n − 1 be given. Then n−1
x ≥ 2, so there exists a prime

p | n−1x . It follows that x | n−1p , i.e. n−1
p = kx for some k ∈ Z. Suppose for contradiction

that ax ≡ 1 (mod n). Then

a(n−1)/p = akx = (ax)k ≡ 1k = 1 (mod n),

a contradiction of our hypothesis. Thus ax 6≡ 1 (mod n), so we can apply Theorem 2 to
get that n is prime.
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The main advantage of Lucas’s Primality Test over Theorem 2 is that fewer congruences
must be tested to determine whether the hypothesis holds. However, both Theorem 3
(Lucas’s Primality Test) and Theorem 2 fall short in that they cannot decide if positive
integer n is composite. Another way to strengthen Lucas’s Primality Test is to generalize
the hypothesis to “if there exists some a ∈ Z with gcd(n, a) = 1 . . .”. The problem with
this stronger version is that it does not describe a decision procedure at all (at least as
stated): there is an infinite number of choices for a ∈ Z, but a decision procedure must
terminate in a finite number of steps.

Now, we will present a successful primality test that satisfies Definition 17.

Theorem 4 (Generalization of Fermat’s Little Theorem). Let a ∈ Z and n ∈ N with
gcd(a, n) = 1 and n ≥ 2. n is prime if and only if (X + a)n ≡ Xn + a (mod n).

Proof. First, we prove sufficiency. Suppose n is prime. Let 1 ≤ i ≤ n− 1 be given. In the
expansion of (x+ a)n, consider the term(

n

i

)
xn−iai =

n!

(n− i)! i!
xn−iai.

Since
(
n
i

)
is a positive integer,

(n− i)! i! | n! = n · (n− 1)!, (1)

Note that for all 1 ≤ m < n, gcd(n,m) = 1, for n is prime. Since 1 ≤ n − i < n
and 1 ≤ i < n, it follows that gcd ((n− i)! i!, n) = 1. Applying Lemma 1 to equation 1,
(n− i)! i! | (n− 1)!. Therefore, (

n

i

)
= n · (n− 1)!

(n− i)! i!
= nk.

We conclude that n |
(
n
i

)
, so (

n

i

)
xn−iai ≡ 0 (mod n).

Now, we prove necessity. Suppose n is composite. There exists a prime p | n. In the
expansion of (x+ a)n, consider the term(

n

p

)
xn−pap =

n!

(n− p)! p!
xn−pap.

Define the multiplicative function f : N → N with f(m) = max
{
k : pk | m

}
. Note that

since p | n, p - n− r for any 0 < r < p. Therefore,

f ((n− p)!) = f(n!)− (f(n) + f(n− 1) + f(n− 2) + · · ·+ f(n− p+ 1))

= f(n!)− (f(n) + 0 + 0 + · · ·+ 0)

= f(n!)− f(n).
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Also,
f(p!) = f(p) + f(p− 1) + · · ·+ f(1) = 1 + 0 + 0 + · · ·+ 0 = 1.

Finally,

f

(
n

p

)
= f

(
n!

(n− p)! p!

)
= f(n!)− f ((n− p)!)− f(p!)

= f(n!)− f(n!) + f(n)− 1

= f(n)− 1.

Then by definition of f , pf(n)−1 |
(
n
p

)
but pf(n) -

(
n
p

)
. However, pf(n) | n, so n -

(
n
p

)
. All

that remains to be shown is that n -
(
n
p

)
ap. By hypothesis, gcd(a, n) = 1, so gcd(ap, n) = 1

as well. By the contrapositive of Lemma 1, it follows that n -
(
n
p

)
ap. Therefore,(

n

p

)
xn−pap 6≡ 0 (mod n).

Algorithm 2 Primality test based on Theorem 4.

Require: n ∈ N with n ≥ 2.
Ensure: Output PRIME if n is prime; otherwise output COMPOSITE.

Find an a ∈ Z such that gcd(a, n) = 1.
if (X + a)n ≡ Xn + a (mod n) then

return PRIME.
else

return COMPOSITE.

Theorem 4 describes a primality test because (i) it is an if-and-only-if statement and
(ii) it describes a procedure that will terminate in a finite number of steps. For an example
of such a decision procedure, see Algorithm 2. The downside of this primality test is that it
extremely is inefficient to compute (X+a)n modulo n for large n, even with binary modular
exponentiation [3]. Multiplying two polynomials of order O(n) is a O(n2) operation in the
worst case. Before we proceed with our search for more efficient primality tests, we need
to give a concrete characterization of what we mean by “efficient” in the first place.

3 Introduction to Complexity Classes

As has become apparent so far, some algorithms are more efficient than others. However, to
compare their efficiency, we need to define what “efficiency” in the context of an algorithm
means in the first place. From now on, assume the domain of each problem is the positive
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integers and the range is a single bit, i.e. a yes or no (or PRIME or COMPOSITE) answer. We
can view problems as functions, where each input n ∈ N is mapped to the answer bit, yes
or no. Now, we define the problem regarding primality testing.

Definition 18. Let PRIMES : (N + 1) → {PRIME, COMPOSITE} denote the function that
maps a positive integer n ≥ 2 to PRIME if it is prime or COMPOSITE if it is composite. That
is,

PRIMES(n) =

{
PRIME if n is prime;

COMPOSITE otherwise.

Each problem has an intrinsic difficulty. While there are an infinite number of algo-
rithms with varying efficiency that can solve a given problem, there is a theoretical lower
bound on the runtime of any algorithm solving a given problem.

There are an infinite number of algorithms (i.e. decision procedures) that solve the
problem PRIMES , but note that each algorithm is distinct from the problem PRIMES itself.

We can parameterize runtime of each of these algorithms in the input n to give us an
estimate of how the number of steps taken by the algorithm grows with larger n, called the
asymptotic time complexity. However, we don’t care about the exact asymptotic function,
just an upper bound written in big-O notation [4].

Definition 19. An algorithm A runs in polynomial time in the length of input n if the
the number of steps taken by A on n is O(logk n) for some k ≥ 0.

Remark 2. Time complexity of algorithms is measured as a function of the input length
and not a function of the input itself. The “length” of a positive integer n is dlog ne, where
the logarithm base is generally taken to be two, since it takes dlog2e bits to represent n in
base two. We can omit the ceiling function in Definition 19 since dlog ne < log n + 1 and
big-O notation is forgiving.

Definition 20. P is the set of problems that are solvable by some algorithm in polynomial
time in the length of the input n.1

Remark 3. Note that Definition 20 involves an existence statement; that is, one needs to
only find one algorithm whose runtime is O(logk n).

Both primality testing algorithms we have presented so far do have a polynomial run-
time in log n. For example, Algorithm 2 involves n−2 divisibility checks in the worst case,
and n − 2 is not O(logk n). Also, Algorithm 2 involves a worst-case multiplication of two
polynomials of order n, which involves reading 2n different coefficients, so we can quickly
see it cannot be O(logk n).

The question naturally arises, does there exist a primality test that determines the
answer in polynomial time? Until recently, the answer to this was unknown (but believed to

1For a more rigorous definition of the complexity class P, see [5].
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be yes). In 1976, Gary Miller presented a primality test and proved its polynomial runtime
under the unproven assumption of the Extended Riemann Hypothesis [6]. Furthermore,
probabilistic primality tests with polynomial runtime, such as the APR Primality Test [7],
were presented in the late 20th century. However, it was not until 2002 when Manindra
Agrawal, Neeraj Kayal, and Nitin Saxena presented the first deterministic primality test
that provably runs in polynomial time with no additional assumptions. In the next section,
we will present their algorithm, the AKS Primality Test, and prove its correctness. In the
section thereafter, we will show its runtime is polynomial.

4 The AKS Primality Testing Algorithm

In this section, we present the AKS Primality Test and prove its correctness. From now
on, assume log n is the base-2 logarithm of n.

4.1 The AKS Algorithm

Algorithm 3 Check the primality of a positive integer n ≥ 2.

Input: n ∈ N with n ≥ 2.
Output: Output PRIME when n is prime; output COMPOSITE when n is composite.

1: if n = ab for some a, b ∈ N with b ≥ 2 then
2: return COMPOSITE

3: Find the smallest r ∈ N such that or(n) > log2(n).
4: if 1 < gcd(a, n) < n for some a ≤ r then
5: return COMPOSITE

6: if n ≤ r then
7: return PRIME

8: Let p be a prime divisor of n such that or(p) > 1.
9: Let l = b

√
φ(r) log nc.

10: for all 0 ≤ a ≤ l do
11: if (X + a)n 6≡ Xn + a (mod Xr − 1, n) then
12: return COMPOSITE

13: return PRIME

Theorem 5 (Correctness of the AKS Algorithm). Algorithm 3 returns PRIME if and only
if the input n is prime.

4.2 Proof of Correctness

We prove the correctness of the AKS primality test (Theorem 5) by proving that at each
step of Algorithm 3, if it terminates, it outputs the correct answer.
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Lemma 1. If Algorithm 3 terminates by line 2, then it returns PRIME if and only if n is
prime.

Proof. If n = ab for some a, b ∈ N with b ≥ 2, clearly n is composite. The algorithm
correctly terminates, returning COMPOSITE.

Before we proceed, we must first prove that finding such an r in line 3 of the AKS
algorithm is possible.

Lemma 2. In Algorithm 3, line 3 describes a valid computation. Furthermore, there exists
an r ∈ N such that

r ≤ max
{

3, dlog5 ne
}

and

or(n) > log2 n (Definition 7).

Proof. Let n ≥ 2, be given. Let B = dlog5 ne. Consider the product

P = n ·
blog2 nc∏
i=1

(
ni − 1

)
.

We will now show P < nlog
4 n = 2log

5 n. To show that P < nlog
4 n,

P = n ·
blog2 nc∏
i=1

(
ni − 1

)
< n ·

blog2 nc∏
i=1

ni

≤ n · nblog
2 nc−1 ·

blog2 nc∏
i=2

nblog
2 nc since blog2 nc − 1 ≥ 1 when n > 2;

≤ nblog
2 nc · nblog

2 nc(blog2 nc−1)

= nblog
2 nc·blog2 nc

≤ nblog
4 nc

≤ nlog
4 n.

To show that nlog
4 n = 2log

5 n, note that

nlog
4 n = 2logn

log4 n

= 2(logn)(log
4 n)

= 2log
5 n.
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Now, define the set
R =

{
r ∈ N : r | n or or(n) ≤ log2 n

}
.

The curious term (ni − 1) in product P comes from a straightforward property of group
order:

nor(n) ≡ 1 (mod r)

⇐⇒ r |
(
nor(n) − 1

)
.

Therefore, if r ∈ R and or(n) ≤ log2 n, then r | P . It then follows that each r | P for all
r ∈ R.

Now, we find some positive integer s 6∈ R with s ≤ dlog5 ne. Note that since dlog5 ne ≥
10 ≥ 7, it follows from Lemma 13 that

LCM
(
dlog5 ne

)
≥ 2dlog

5 ne.

However, P < 2dlog
5 ne, so there exists some positive integer s ≤ dlog5 ne such that s 6∈ R.

(Otherwise, LCM
(
dlog5e

)
| P but P < LCM

(
dlog5e

)
, a contradiction.) Therefore, os(n) >

log2 n.2

We conclude that there exists a least positive integer r such that or(n) > log2 n.

Now, we can move on to proving the correctness of the next line in the algorithm.

Lemma 3. If Algorithm 3 terminates by line 5, then it returns PRIME if and only if n is
prime.

Proof. Suppose there exists a positive integer a ≤ r such that 1 < gcd(a, n) < n. Since
gcd(a, n) | n, n = k gcd(a, n) for some k ∈ N. Therefore n is composite, and the algorithm
correctly proceeds to return COMPOSITE on line 5.

Lemma 4. If Algorithm 3 reaches line 6 and terminates by line 7, then it returns PRIME

if and only if n is prime.

Proof. Suppose n ≤ r. First, consider the case when n is composite. There exists a
positive integer 1 < a < n ≤ r such that a | n. That is, 1 < a ≤ gcd(a, n) < n, so the
algorithm terminates at line 5, never reaching line 6. Otherwise, n is prime. In this case,
the algorithm reaches 6 and proceeds to line 7 and correctly returns PRIME.

Lemma 5. If Algorithm 3 reaches line 8, there exists a prime p that divides n with or(p) >
1. Furthermore, p > r and gcd(p, r) = 1.

2[8] considers when gcd(s, n) = 1 and gcd(s, n) > 1 separately, but I cannot figure out why that would
be necessary.
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Proof. Suppose the algorithm reaches line 8. Then the if-predicate on line 6 was not
satisfied, so n > r. Suppose for contradiction that all primes pi dividing n have order
or(p) = 1. Then

n = p1p2 · · · pt ≡ 1 · 1 · · · · · 1 = 1 (mod r),

so or(n) = 1 as well. However, r was computed to have the property that or(n) > log2 n ≥
1, a contradiction. Therefore, there exists a prime divisor p of n such that or(p) > 1. Now,
suppose for contradiction that p ≤ r. If p = n, then the algorithm terminated on line 7,
a contradiction. Otherwise, 1 < p < n, so 1 < gcd(p, n) = p < n. Then the algorithm
terminated on line 5, a contradiction. We conclude that p > r. Finally, note that since
r < n, and the if-predicate on line 4 was not satisfied, gcd(r, n) = 1. But since p | n,
gcd(r, p) | gcd(r, n) = 1, so gcd(r, p) = 1 as well.

Lemma 6. If Algorithm 3 reaches line 10 and terminates by line 12, then it returns PRIME

if and only if n is prime.

Proof. If the algorithm reaches line 12, then the if-predicate of line 10 was satisfied for
some 0 ≤ a ≤ bφ(r) log nc. That is,

(X + a)n 6≡ Xn + a (mod Xr − 1, n).

It directly follows that
(X + a)n 6≡ Xn + a (mod n).

However, since the algorithm has reached line 10, the if-predicate of line 4 was not satisfied,
so gcd(a, n) = 1. Therefore, Lemma 4 applies, so we conclude that n is composite and thus
the algorithm correctly returns COMPOSITE.

Lemma 7. If Algorithm 3 terminates at line 13, then n is prime.

The proof of Lemma 7 is the most difficult. Before we can prove it, we will need to
obtain a few results that characterize the behavior of the previous for-loop on line 10.

4.3 Introspective Numbers

We introduce the following useful concept for proving Lemma 7.

Definition 21. Let A(X) ∈ Fp[X] be a polynomial and m be a positive integer. Call m
introspective3 for A(X) if

(A(X))m ≡ A (Xm) (mod Xr − 1, p).

3[8] introduces this term for proving the correctness of the AKS algorithm.
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Note that if the algorithm does not terminate until line 13, then n is introspective for
all X + a when 0 ≤ a ≤ l, since

(X + a)n ≡ Xn + a (mod Xr − 1, n)

=⇒ (X + a)n ≡ Xn + a (mod Xr − 1, p) since p | n.

Now, we’ll introduce and prove a couple of properties about introspective numbers, namely
(i) that the set of positive integers introspective for a given polynomial is closed under
multiplication and (ii) that the set of polynomials for which a given positive integer is
introspective is closed under multiplication.

Lemma 8. If a and b are introspective for some A(X) ∈ Fp[X], then their product ab is
introspective for A(X) as well.

Proof. Let A(X) ∈ Fp[X] and a, b ∈ N be given such that a, b are introspective for A(X).
Then

A
(
xab
)

= A
(

(Xa)b
)

= A
(
Y b
)

where Y = Xa;

≡ (A(Y ))b (mod Y r − 1, p) since b is introspective for A(Y )

≡ (A(Y ))b (mod Xar − 1, p) since Y = Xa

≡ (A(Y ))b (mod Xr − 1, p) since Xar − 1 = (Xr − 1) ·
a−1∑
i=0

Xi

= (A(Xa))b since Y = Xa

≡ A(X)ab (mod Xr − 1, p) since a is introspective for A(X).

Lemma 9. If m is introspective for polynomials A(X), B(X) ∈ Fp[X], then m is intro-
spective for A(X) ·B(X) as well.

Proof. Since m introspective for A(X) and B(X),

(A(X))m ≡ A(Xm) (mod Xr − 1, p)

(B(X))m ≡ B(Xm) (mod Xr − 1, p).

Multiplying the respective sides of each congruence together, we have

(A(X))m (B(X))m = (A(X)B(X))m ≡ A(Xm)B(Xm) = (AB)(Xm) (mod Xr − 1, p).
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Now, we will define two sets, I and P , and then prove a couple of their properties
related to introspectiveness.

Definition 22. Define the sets

I =

{(
n

p

)i
pj : i, j ≥ 0

}

P [X] =

{
l∏

a=0

(X + a)sa : sa ≥ 0

}
.

Lemma 10. If Algorithm 3 reaches line 13, then for every m ∈ I and A(X) ∈ P [X], m is
introspective for A(X).

Proof. We first show that p and n
p are introspective for all X + a with 0 ≤ a ≤ l and then

we apply Lemmas 8 and 9 to obtain the result.
Let 0 ≤ a ≤ l be given. First, note that since the algorithm reaches line 13,

(X + a)n ≡ Xn + a (mod Xr − 1, n)

=⇒ (X + a)n ≡ Xn + a (mod Xr − 1, p) since p | n. (2)

Since p is prime, by Lemma 4 we have that

(X + a)p ≡ Xp + a (mod p)

=⇒ (X + a)p ≡ Xp + a (mod Xr − 1, p).

We claim that any pth root of Xp + a is congruent to X + a modulo Xr − 1 and p. To
show this, let C(X) = c0 + c1X + c2X

2 + · · ·+ ctX
t such that ct 6≡ 0 (mod p) and t < r,

and suppose

(C(X))p =
(
c0 + c1X + · · ·+ ctX

t
)p ≡ Xp + a (mod Xr − 1, p).

Note that since each ci 6≡ 0 (mod p) and p is prime, gcd p, ci = 1. Let

Y = c1X + · · ·+ ctX
t = X(c1 + · · ·+ ctX

t−1).

Then

C(X)p =
(
c0 + c1X + · · ·+ ctX

t
)p

=
(
c0 +

(
c1X + · · ·+ ctX

t
))p

= (c0 + Y )p

≡ c0 + Y p (mod p) since c0 ≡ 0 (mod p) or gcd(c0, p) = 1, in which case Theorem 4 applies

= c0 +
(
c1X + · · ·+ ctX

t
)p
.
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This process can be repeated t times to obtain that

C(X)p ≡ c0 + c1X
p + c2X

2p + · · ·+ ctX
pt (mod p), so

a+Xp ≡ c0 + c1X
p + · · ·+ ctX

pt (mod Xr − 1, p).

It must be the case that the order of ctX
pt (pt) is congruent to the order of a (0) or Xp (p)

modulo r. Suppose for contradiction that pt ≡ 0 (mod r), so that r | pt. Since gcd(p, r) =
1, r | t. However, t < r, so t = 0. But then C(X) = c0, and then C(X)p = cp0 ≡ c0 6≡ a+Xp

(mod Xr−1, p), a contradiction. Therefore, pt ≡ p (mod r), so that r | p(t−1). However,
t− 1 < r, so t− 1 = 0 and thus t = 1. It follows that C(X) = c0 + c1X, and

c0 + c1X
p ≡ a+Xp (mod Xr − 1, p).

Clearly, c0 ≡ a (mod p) and c1 ≡ 1 (mod p). We conclude that any pth root C(X) is
congruent to

C(X) ≡ a+X (mod Xr − 1, p).

Now, let Y = Xn/p. Then

(Y + a)p ≡ Y p + a (mod Xr − 1, p)

⇐⇒ (Xn/p + a)p ≡ (Xn/p)p + a (mod Xr − 1, p)

⇐⇒ (Xn/p + a)p ≡ Xn + a (mod Xr − 1, p).

≡ (X + a)n (mod Xr − 1, p) by Equation 2.

But any pth root of Y p+a =
(
Xn/p

)p
+a is congruent to Y +a = Xn/p+a, so we conclude

that
Xn/p + a ≡ (X + a)n/p (mod Xr − 1, p).

Therefore, n is introspective for X + a.
To recap, we have now shown that p and n/p are introspective for X+a for all 0 ≤ a ≤ l.

Now, let an arbitrary polynomial A(x) =
∏l
a=0(X+a)sa ∈ P [X] be given. Since p and n/p

are introspective for factor X + a, inductively applying Lemma 9 gives us that p and n/p
are introspective for A(x). Now, let an arbitrary integer m = pi(n/p)j ∈ I be given. Since
p and n/p are introspective for A(x), by inductively applying Lemma 8, we have that m is
also introspective for A(x).

Definition 23. Let G be the group of residues in I modulo r, i.e.

G = {s ∈ Zr | ∃m ∈ I such that s ≡ m (mod r)} .

Let |G| = t.
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Definition 24. There exists a Q′r(X) ∈ Fp[X] congruent to the rth cyclotomic polynomial
modulo p. Note that while the rth cyclotomic polynomial is irreducible in Z[X], Q′r(X)
is not necessarily reducible in Fp[X] due to the finiteness of the field. Let h(X) ∈ Fp[X]
be an irreducible polynomial divisor of Q′r(X) modulo p. Define the set F = Fp[X]/h(X).
Note that F is a field under polynomial addition and multiplication modulo h(X) and p.
Now, define the group

G = {A(X) ∈ Fp[X] | A(X) ≡ B(X) (mod h(X), p) where B(X) ∈ P} .

That is, G is the set of residues of polynomials in P modulo h(X) and p.

A couple of remarks about the group G: Note that since P is generated by polynomials
of the form X + a where 0 ≤ a ≤ l, so is G. Furthermore, we claim that G is indeed a
group, but do not provide a proof.

This group G is the crux of the AKS algorithm. The upper bound on the size of group
G indicates the maximum number of values for a you need to check in the congruence

(X + a)n
?≡ Xn + a (mod Xr − 1, n)

on line 10 of the algorithm. Now, we will prove a lower bound on the size of group G. In
order for the AKS algorithm to terminate in time polynomial on log n, we cannot check
more than O(logk n) different values of a, so the size of G must also be O(logk n). This is
what we will prove next.

Lemma 11. The group G contains at least
(
t+1
t−1
)

elements, i.e.

|G| ≥
(
t+ 1

t− 1

)
.

Proof. First, we show that X is a rth primitive root of unity in F . Note that

Xr ≡ 1 (mod Xr − 1, p)

=⇒ Xr ≡ 1 (mod Qr(X), p) since Qr(X) | Xr − 1

=⇒ Xr ≡ 1 (mod h(X), p) since h(X) | Qr(X).

Therefore, X is an rth root of unity. Furthermore, X is primitive because for any s | t and
1 ≤ s < t, gcd(Qr(X), Xs − 1) = 1, since any rth root of unity is not a sth root of unity
(Definition 14).

We’ll now show that distinct polynomials of degree less than |G| = t are not congruent in
F . Let distinct polynomials f(X), g(X) ∈ P [X] be given such that deg f(X),deg g(X) < t.
Suppose for contradiction that f(X) ≡ g(X) (mod h(X), p). For each m ∈ I,

f(X) ≡ g(X) (mod h(X), p)

=⇒ (f(X))m ≡ (g(X))m (mod h(X), p).
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Furthermore, since m is introspective for f(X) and g(X) by Lemma 10,

(f(X))m ≡ f(Xm) (mod Xr − 1, p) =⇒ (f(X))m ≡ f(Xm) (mod h(X), p) and

(g(X))m ≡ g(Xm) (mod Xr − 1, p) =⇒ (g(X))m ≡ g(Xm) (mod h(X), p),

since h(X) | Xr−1. Therefore, f(Xm) ≡ g(Xm) (mod h(X), p). Furthermore, each m ∈ I
is relatively prime to p and since X is a pth root of unity, each Xm is also a pth root of
unity. Therefore, the polynomial

f(Xm)− g(Xm) = (f − g)(Xm) ≡ 0 (mod h(X), p)

has |G| = t distinct roots in Fp. It follows that deg(f − g)(Xm) ≥ t, so deg f(Xm) ≥ t or
deg g(Xm) ≥ t, a contradiction. We conclude that

f(X) 6≡ g(X) (mod h(X), p).

Now, we can supply a lower bound on the number of polynomials in group G. First,
we will need the following inequality:

or(n) ≤ r. (3)

To show this holds, note that the least positive integer i = or(n) such that ni ≡ 1 (mod r)
must be less than r by the Pigeonhole Principle. It then follows that

l =
√
φ(r) log n

<
√
r log n since φ(k) < k for all k ∈ N

<
√
r ·
√
or(n) by selection of r in line 3 of Algorithm 3

≤
√
r ·
√
r from Inequality 3

= r.

Now, we’ll show there are at least l + 1 polynomials of degree one in G. Note that for all
0 ≤ i ≤ l, X + i ∈ P and 0 ≤ i < l < r < p. Furthermore, deg h(X) > 1, so X + i ∈ G by
Definition 24. Further note that for all 0 ≤ i, j ≤ l,

X + i ≡ X + j (mod h(X), p)

⇐⇒ i ≡ j (mod p)

⇐⇒ i = j since 0 ≤ i, j < r < p.

Furthermore, since deg h(X) > 1, every X + i 6≡ 0 (mod h(X), p). Since there are l + 1
choices for 0 ≤ i ≤ l in the polynomial X + i, there are at least l+ 1 polynomials of degree
one in G.
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Finally, we will show a lower bound on the number of polynomials in G. Consider a
polynomial of the form

A(X) =

l∏
a=0

(X + a)sa

where each sa is a nonnegative integer. In the first part of this proof, we found that there
is a one-to-one correspondence between the set of polynomials of degree less than t and
the set of their corresponding residues modulo h(X) and p. Therefore, a lower bound
on the number of polynomials of degree less than t also provides a lower bound on the
number of polynomial residues in G. To simplify things, we will just count the number of
polynomials A(X) ∈ P [X] with degreeexactly t− 1. Note that the number of polynomials
A(X) =

∏l
a=0(X + a)sa ∈ P [X] with degA(X) = t− 1 is equal to the number of solutions

to the equation

l∑
a=0

sa = t− 1 where each sa is a nonnegative integer. (4)

We have l + 1 variables s0, s1, . . . , sl over which to distribute a sum of t− 1. Applying
the “stars and bars” technique from combinatorics [9], there are precisely(

(l + 1) + (t− 1)

t− 1

)
=

(
t+ l

t− 1

)
solutions to Equation 4. It follows that there are exactly

(
t+l
t−1
)

polynomials of degree t− 1
in P [X], each of which map to a distinct polynomial residue modulo h(X) and p in G. We
conclude that

|G| ≥
(
t+ l

t− 1

)
.

Now that we have proven a lower bound on the cardinality of G, we will prove a
conditional upper bound on the cardinality of G.

Lemma 12. If n is not a power of p, then |G| ≤ n
√
t.

Proof. Define the set

I ′ =

{(
n

p

)i
· pj | 0 ≤ i, j ≤ b

√
tc

}
.

Note that I ′ ⊂ I. Suppose n is not a power of p. Then there exists a prime q | n distinct
from p, and let α ∈ N be the power of q in the prime factorization of n (that is, such that
qα | n but qα+1 - n). To show that each (i, j) pair produces a distinct element in I ′, let
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z1 =
(
n
p

)i1
· pj1 ∈ I ′ and z2 =

(
n
p

)i2
· pj2 ∈ I ′ be given such that z1 = z2. It follows that

αp(z1) = αp(z2) and αq(z1) = αq(z2). But

αq(z1) = αq

((
n

p

)i1
pj1

)

= αq

((
n

p

)i1)
= αq

(
ni1
)

= i1αq(n).

Similarly, αq(z1) = i2αq(n). Since αq(z1) = αq(z2), i1αq(n) = i2αq(n), so i1 = i2. Let
i = i1 = i2. Now,

z1 = z2

=⇒
(
n

p

)i
pj1 =

(
n

p

)i
pj2

=⇒ pj1 = pj2

=⇒ j1 = j2 since p > 1.

Therefore, (i1, j1) = (i2, j2). Since there are b
√
tc + 1 choices for each i and j, each of

which correspond to a distinct integer z ∈ I ′, so there are a total of∣∣I ′∣∣ =
(
b
√
tc+ 1

)
·
(
b
√
tc+ 1

)
=
(
b
√
tc+ 1

)2
> t since b

√
tc+ 1 > (t− 1) + 1 = t

integers in I ′. However, the group G contains only t elements, so there exists at least one
pair of distinct integers z1, z2 ∈ I ′ such that

z1 ≡ z2 (mod r),

where z1 > z2. By definition of modular congruence, r | (z1 − z2), so z1 − z2 = km for
some nonnegative k ∈ Z. Now, to show that Xz1 ≡ Xz2 (mod Xr − 1), first note that

Y − 1 | Y m − 1 = (Y − 1)(Y m−1 + Y m−2 + · · ·+ 1).
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Substituting Xr in for Y gives

Xr − 1 | Xrm − 1

=⇒ Xr − 1 | Xz2(Xrm − 1)

=⇒ Xr − 1 | Xz2(Xz1−z2 − 1)

=⇒ Xr − 1 | Xz1 −Xz2

=⇒ Xz1 ≡ Xz2 (mod Xr − 1). (5)

Now, consider the polynomial Q′(Y ) = Y z1 −Y z2 ]. We will count the polynomial roots
of Q′(Y ) in F , i.e. the number of symbolic substitutions Y = A(X) such that Q′(A(X)) ≡ 0
(mod h(X), p). This will give us an upper bound for |G|. Let A(X) ∈ G be arbitrary. It
follows that

(A(X))z1 ≡ A(Xz1) (mod Xr − 1, p)

=⇒ ≡ A(Xz2) (mod Xr − 1, p) from Congruence 5

=⇒ ≡ (A(X))z2 (mod Xr − 1, p)

=⇒ (A(X))z1 ≡ (A(X))z2 (mod h(X), p). (6)

We then have that

Q′(A(X)) = (A(X))z1 − (A(X))z2 ≡ 0 (mod h(X), p) by Congruence 6.

Therefore, A(X) is a root of Q′(Y ) in F . However, A(X) is an arbitrary element of G, so
Q′(Y ) has at least |G| distinct polynomial roots in F . It follows that

degQ′(Y ) = deg (Y z1 − Y z2) = z1 ≥ |G| (7)

since z1 > z2. However, since z1 ∈ I ′,

z1 ≤ max I ′ =

((
n

p

)
p

)b√tc
= nb

√
tc. (8)

Combining Inequalities 7 and 8, we have that

|G| ≤ nb
√
tc.

4.4 Proof of Correctness: Part II

In the previous section, we spent a while developing necessary theory about how polynomial
rings and the group of polynomial residues G behave when the algorithm reaches line 13
of the AKS Algorithm (Algorithm 3). Now, we will get to see our work pay off in the
following quick proof of the algorithm’s correctness when it reaches the last line, 13. (The
following is a restatement of Lemma 7.)
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Lemma 7. If Algorithm 3 terminates at line 13, then n is prime.

Proof. Suppose that Algorithm 3 reaches line 13, and suppose for contradiction that the
input n is not a power of a prime. Then Lemmas 12 and 11 apply, so we have that(

t+ l

t− 1

)
≤ |G| ≤ nbtc.

Let’s now establish a couple of inequalities we’ll need to use shortly. Firstly,

log2 n < or(n) by our choice of r

≤ t since there are or(n) residues of ni (mod r) in I

=⇒ log n <
√
t

=⇒
√
t log n < t

=⇒ b
√
t log nc < t

=⇒ b
√
t log nc+ 1 ≤ t. (9)

Then (
t+ l

t− 1

)
>

(⌊√
t log n

⌋
+ l + 1(⌊√

t log n
⌋) )

by Property 4 and Inequality 94 (10)

Also, note that since each i ∈ I is relatively prime to r, it follows that each residue i′ ∈ G
is also relatively prime to r. Therefore,

l =
⌊√

φ(r) log n
⌋
≥
⌊√

t log n
⌋

=⇒
(⌊√

t log n
⌋

+ l + 1⌊√
t log n

⌋ )
≥
(

2
⌊√

t log n
⌋

+ 1⌊√
t log n

⌋ )
by Property 4. (11)
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For our last intermediate inequality, temporarily let d =
⌊√

t log n
⌋

for clarity. Then(
2d+ 1

d

)
=

(2d+ 1)!

d! (d+ 1)!

=
(d+ 2)(d+ 3) · · · (2d+ 1)

1 · 2 · · · · · d

=

d∏
i=1

d+ 1 + i

i

=

d∏
i=1

(
d+ 1

i
+ 1

)

=

(
d+ 1

1
+ 1

) d∏
i=2

(
d+ 1

i
+ 1

)
≥
(
d+ 1

1
+ 1

)
2d−1 since

d+ 1

i
+ 1 ≥ 2 for all 1 ≤ i ≤ d

≥
(

2 + 1

1
+ 1

)
2d−1 since d ≥ 25

= 4 · 2d−1

= 2d+1 = 2b
√
t lognc. (12)

We can finally show that

n
√
t ≥ |G| by Lemma 12

≥
(
t+ l

t− 1

)
by Lemma 11

>

(
l + 1 +

⌊√
t log n

⌋⌊√
t log n

⌋ )
by Inequality 9.

≥
(

2
⌊√

t log n
⌋

+ 1⌊√
t log n

⌋ )
by Inequality 11

≥ 2b
√
t lognc+1 by Inequality 12

≥ 2
√
t logn

=
(

2logn
)√t

= n
√
t.

But then n
√
t ≥ |G| > n

√
t, a contradiction. We conclude that n must be a power of p, i.e.

n = pk for some k ∈ N. But since the Algorithm 3 reached line 13, the if-predicate on line
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4 was not fulfilled, so for all k ≥ 2, pk 6= n. Therefore, k = 1 and thus n = p is prime. We
conclude the algorithm terminates with the correct output, PRIME, on line 13.

4.5 Proof of Correctness: Conclusion

Lemmas 1–7 collectively prove that whenever Algorithm 3 terminates, it produces correct
output. Theorem 5 directly follows.

4.6 Asymptotic Time Complexity

Now, we will demonstrate that the time complexity of Algorithm 3 is polynomial in log n.
Assume that addition, multiplication, and division of two integers m ≤ n can be done in
O(log n) time [10].

Theorem 6. The time complexity of Algorithm 3 is polynomial in log n.

Proof. Line 1 involves checking whether n is a perfect power, which can be done in O(log3 n)
time [11].

Line 3 involves finding the smallest r ∈ N such that or(n) > log2 n. However, from
Lemma 2, we know that r < log5 n. We can check the smallest candidates for r first,
starting at r = 1. For each candidate for r, we must compute nlog

2 n in the worst case,
which with binary exponentiation takes O

(
log n · log

(
log2 n

))
= O(log n log log n) time.

Performing this computation r < log5 n times thus takes O(log5 n · log n · log log n) time,
which is in turn less than O(log7 n) time.

Line 4 involves computing gcd(a, n) for at most r different integers. Each gcd computa-
tion takes O(log n) [10], and r < log5 n, so the time taken in this step is O(log5 n · log n) =
O(log6 n).

Line 6 simply involves the comparison n ≤ r, which take O(log n) time.
Now, consider the inner body of the for-loop on line 11, which involves computing (X+

a)n
?≡ Xn+a (mod Xr−1, n) for a given integer a. Using binary exponentiation, (X+a)n

can be evaluated in log n multiplications of polynomials of order less than r < log5 n, which
takes O(r2) time. Therefore, the entire equation can be evaluated in O(log1 0n · log n) =
O(log1 1n) time.

The for-loop on line 10 runs at most

l + 1 = b
√
φ(r) log nc+ 1

< b
√
r log nc+ 1

< blog5/2 log nc+ 1

< log7/2 +1

times. As explained above, each iteration of the loop takes O(log11 n) time, so the entire
for-loop takes O(log7/2 · log11 n) = O(log29/2 n) time.
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The bottleneck step is the final one, so the entire algorithm runs in O(log29/2 n) time
6 We conclude that the algorithm runs in polynomial time in log n.

5 PRIMES ∈ P

Theorem 7. PRIMES ∈ P.

Proof. Algorithm 3 correctly decides if a given input n ∈ N (with n ≥ 2) is prime in
polynomial time (Theorems 5 and 6).

6 Conclusion

The introduction of the AKS Primality Test was a stunning breakthrough in number theory
and theoretical computer science. Remarkably, its proof requires fairly elementary number
theory – it is therefore surprising that this algorithm went undiscovered until recently. In
this paper, we have shown primality testing is a fundamentally easy problem – P contains
the easiest problems in algorithmic complexity theory.

Even if the AKS Primality Test improved the theoretical lower bound on the algorithmic
time complexity of primality testing, it does not follow that the AKS algorithm is faster
than existing algorithms for smaller n. In fact, the AKS algorithm is almost certainly
not the fastest algorithm in most situations. This is not a failing of the AKS algorithm,
but rather the difference between an absolutely “fast” algorithm versus an asymptotically
“fast” algorithm.

7 Appendix

In this section, we give detailed proofs of some lemmas that are used in the main proof of
correctness of the AKS Primality Test (Algorithm 3) but are not required for understanding
the core of the proof.

Lemma 13. For all n ≥ 9, LCM(n) ≥ 2n.

Proof. There are two parts to the proof, which follows closely to Nair’s proof [12]: first, we
show that LCM(2n+ 1) ≥ n(2n+ 1)

(
2n
n

)
; thereafter, we show that n(2n+ 1)

(
2n
n

)
≥ n4n.

To show LCM(n) ≥ n(2n+ 1)
(
2n
n

)
, we will examine an integral that we will evaluate in

two different ways to obtain an identity. Consider the definite integral

I =

∫ 1

0
xm−1(1− x)n−m dx.

6For a proof that the AKS algorithm runs in O(log21/2 n) time, see [8].
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One way of evaluating this integral is to expand the integrand into a power series:

xm−1(1− x)n−m = xm−1 ·
n−m∑
k=0

(−1)k
(
n−m
k

)
xk

=

n−m∑
k=0

(−1)k
(
n−m
k

)
xm+k−1.

Substituting this power series into the integral and evaluating, we have

I =

∫ 1

0

(
n−m∑
k=0

(−1)k
(
n−m
k

)
xm+k−1

)
dx

=
n−m∑
k=0

(∫ 1

0
(−1)k

(
n−m
k

)
xm+k−1 dx

)

=

n−m∑
k=0

[
(−1)k

(
n−m
k

)
1

m+ k
xm+k

]1
x=0

=
n−m∑
k=0

(−1)k
(
n−m
k

)
1

m+ k

=
n∑

r=m

αr
r

where each αr ∈ Z

=
0

1
+

0

2
+ · · ·+ αm

m
+ · · ·+ αn

n

=
α

LCM(n)
for some α ∈ Z. (13)

Therefore, I · LCM(n) = α is a positive integer. Another way of evaluating the integral I
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is to repeatedly integrate by parts:

I =

∫ 1

0
xm−1(1− x)n−m dx

=

∫ 1

0
u dv where u = (1− x)n−m and dv = xm−1 dx

=

[
(1− x)n−m

xm

m

]1
x=0

+
n−m
m

∫ 1

0
xm(1− x)n−m−1 dx

=
n−m
m

∫ 1

0
xm(1− x)n−m−1 dx

. . .

=
n−m
m

· n−m− 1

m+ 1
· · · · · 1

n− 1
·
∫ 1

0
xn−1(1− x)0 dx

=
n−m
m

· n−m− 1

m+ 1
· · · · · 1

n− 1
· 1

n

=
(m− 1)!(n−m)!

n!

=
1

m
· m! (n−m)!

n!

=

[
m

(
n

m

)]−1
.

We know from Equation 13 that

I · LCM(n) =
LCM(n)

m
(
n
m

) ∈ N,

so m
(
n
m

)
| LCM(n). Now, let n = 2N and m = N , so that N

(
2N
N

)
| LCM(2N). Note that

LCM(2N) | LCM(2N + 1), so

N

(
2N

N

)
| LCM(2N + 1). (14)

Similarly, we can take n = 2N + 1 and m = N + 1 to obtain that

(N + 1)

(
2N + 1

N + 1

)
= (N + 1)

(2N + 1)!

(N + 1)!N !

= (2N + 1)
(2N)!

N !N !

= (2N + 1)

(
2N

N

)
. (15)
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divides LCM(2N + 1).
To summarize what we have found so far, we know that N

(
2N
N

)
| LCM(2N + 1) and

(2N + 1)
(
2N
N

)
| LCM(2N + 1). But gcd(N, 2N + 1) = 1 since if k | N and k | 2N + 1, then

k | (2N + 1) − 2N = 1, so k = 1. Since N and 2N + 1 are relatively prime, we conclude
that N(2N + 1) | LCM(2N + 1), so

LCM(2N + 1) ≥ N(2N + 1)

(
2N

N

)
. (16)

Now, we show that N(2N + 1)
(
2N
N

)
≥ N4N . Consider the binomial expansion of

4N = (1 + 1)2N ,

(1 + 1)2N =

2N∑
n=0

(
2N

n

)
≤ (2N + 1)

(
2N

N

)
.

Therefore,

N(2N + 1)

(
2N

N

)
≥ N4N . (17)

Combining equations 16 and 17, we have that

LCM(2N + 1) ≥ N(2N + 1)

(
2N

N

)
≥ N4N ≥ 2 · 4N = 22N+1. (18)

for N ≥ 2. Furthermore, when N ≥ 4, we have that

LCM(2N + 2) ≥ LCM(2N + 1) ≥ 4 ≥ N4N ≥ 4 · 4N = 22N+2. (19)

Combining equations (18) and (19), we have that for all N ≥ 4, LCM(2N + 1) ≥ 22N+1

and LCM(2N + 2) ≥ 22N+2, thus we conclude

LCM(n) ≥ 2n for all n ≥ 2 · 4 + 1 = 9.

29



References

[1] R. Lidl and H. Niederreiter, Introduction to finite fields and their applications. Cam-
bridge university press, 1994.

[2] P. D. Schumer, Introduction to number theory. Brooks/Cole Publishing Company,
1996.

[3] D.-Z. Sun, Z.-F. Cao, and Y. Sun, “How to compute modular exponentiation with
large operators based on the right-to-left binary algorithm,” Applied mathematics and
computation, vol. 176, no. 1, pp. 280–292, 2006.

[4] J. Stopple, A primer of analytic number theory: from Pythagoras to Riemann. Cam-
bridge University Press, 2003.

[5] D. C. Kozen, Theory of computation. Springer Science & Business Media, 2006.

[6] G. L. Miller, “Riemann’s hypothesis and tests for primality,” Journal of computer and
system sciences, vol. 13, no. 3, pp. 300–317, 1976.

[7] L. M. Adleman, “On distinguishing prime numbers from composite numbers,” in 21st
Annual Symposium on Foundations of Computer Science (sfcs 1980), pp. 387–406,
IEEE, 1980.

[8] M. Agrawal, N. Kayal, and N. Saxena, “Primes is in p,” Annals of mathematics,
pp. 781–793, 2004.

[9] R. A. Brualdi, Introductory combinatorics. Prentice Hall, 5 ed., 2018.

[10] J. Von Zur Gathen and J. Gerhard, Modern computer algebra. Cambridge university
press, 2013.

[11] D. Bernstein, “Detecting perfect powers in essentially linear time,” Mathematics of
computation, vol. 67, no. 223, pp. 1253–1283, 1998.

[12] M. Nair, “On chebyshev-type inequalities for primes,” The American Mathematical
Monthly, vol. 89, no. 2, pp. 126–129, 1982.

30


	Notation and Definitions
	Divisibility
	Greatest Common Divisor
	Least Common Multiple
	Modular Congruence
	Group Theory
	Polynomials
	Combinatorics

	Introduction to Primality Testing
	Introduction to Complexity Classes
	The AKS Primality Testing Algorithm
	The AKS Algorithm
	Proof of Correctness
	Introspective Numbers
	Proof of Correctness: Part II
	Proof of Correctness: Conclusion
	Asymptotic Time Complexity

	PRIMES P
	Conclusion
	Appendix

